Multi-GPU numerical simulation of electromagnetic waves
ESAIM. Proceedings, Tome 45 (2014), pp. 199-208.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we present three-dimensional numerical simulations of electromagnetic waves. The Maxwell equations are solved by the Discontinuous Galerkin (DG) method. For achieving high performance, we exploit two levels of parallelism. The coarse grain parallelism is managed through MPI and a classical domain decomposition. The fine grain parallelism is managed with OpenCL in order to optimize the local computations on multicore processors or GPU’s. We present several numerical experiments and performance comparisons.
DOI : 10.1051/proc/201445020

Philippe Helluy 1 ; Thomas Strub 2

1 Inria Tonus and IRMA Université de Strasbourg;
2 Axessim, rue J. Sapidus Illkirch France;
@article{EP_2014_45_a20,
     author = {Philippe Helluy and Thomas Strub},
     title = {Multi-GPU numerical simulation of electromagnetic waves},
     journal = {ESAIM. Proceedings},
     pages = {199--208},
     publisher = {mathdoc},
     volume = {45},
     year = {2014},
     doi = {10.1051/proc/201445020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445020/}
}
TY  - JOUR
AU  - Philippe Helluy
AU  - Thomas Strub
TI  - Multi-GPU numerical simulation of electromagnetic waves
JO  - ESAIM. Proceedings
PY  - 2014
SP  - 199
EP  - 208
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445020/
DO  - 10.1051/proc/201445020
LA  - en
ID  - EP_2014_45_a20
ER  - 
%0 Journal Article
%A Philippe Helluy
%A Thomas Strub
%T Multi-GPU numerical simulation of electromagnetic waves
%J ESAIM. Proceedings
%D 2014
%P 199-208
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201445020/
%R 10.1051/proc/201445020
%G en
%F EP_2014_45_a20
Philippe Helluy; Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM. Proceedings, Tome 45 (2014), pp. 199-208. doi : 10.1051/proc/201445020. http://geodesic.mathdoc.fr/articles/10.1051/proc/201445020/

Cité par Sources :