Mathematical framework for traction force microscopy
ESAIM. Proceedings, Tome 42 (2013), pp. 61-83.

Voir la notice de l'article provenant de la source EDP Sciences

This paper deals with the Traction Force Microscopy (TFM) problem. It consists in obtaining stresses by solving an inverse problem in an elastic medium, from known experimentally measured displacements. In this article, the application is the determination of the stresses exerted by a living cell at the surface of an elastic gel. We propose an abstract framework which formulates this inverse problem as a constrained minimization one. The mathematical constraints express the biomechanical conditions that the stress field must satisfy. From this framework, two methods currently used can be derived, the adjoint method (AM) and the Fourier Transform Traction Cytometry (FTTC) method. An improvement of the FTTC method is also derived using this framework. The numerical results are compared and show the advantage of the AM, in particular its ability to capture details more accurately.
DOI : 10.1051/proc/201342005

R. Michel 1 ; V. Peschetola 1, 2 ; G. Vitale 3 ; J. Étienne 1 ; A. Duperray 4, 5 ; D. Ambrosi 6 ; L. Preziosi 2 ; C. Verdier 1

1 CNRS / Univ. Grenoble 1, Laboratoire Interdisciplinaire de Physique, UMR 5588, Grenoble, F-38041, France.
2 Dipartimento di Matematica, Politecnico di Torino, 10129 Torino, Italy.
3 Laboratoire de Mécanique des Solides, CNRS UMR 7649, École Polytechnique, 91128 Palaiseau Cedex, France.
4 INSERM U823, Grenoble, France.
5 Univ. Grenoble 1, Institut Albert Bonniot et Institut Français du sang, UMR-S823, Grenoble, France.
6 MOX - Dipartimento di Matematica, Politecnico di Milano, Milano, Italy.
@article{EP_2013_42_a5,
     author = {R. Michel and V. Peschetola and G. Vitale and J. \'Etienne and A. Duperray and D. Ambrosi and L. Preziosi and C. Verdier},
     title = {Mathematical framework for traction force microscopy},
     journal = {ESAIM. Proceedings},
     pages = {61--83},
     publisher = {mathdoc},
     volume = {42},
     year = {2013},
     doi = {10.1051/proc/201342005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201342005/}
}
TY  - JOUR
AU  - R. Michel
AU  - V. Peschetola
AU  - G. Vitale
AU  - J. Étienne
AU  - A. Duperray
AU  - D. Ambrosi
AU  - L. Preziosi
AU  - C. Verdier
TI  - Mathematical framework for traction force microscopy
JO  - ESAIM. Proceedings
PY  - 2013
SP  - 61
EP  - 83
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201342005/
DO  - 10.1051/proc/201342005
LA  - en
ID  - EP_2013_42_a5
ER  - 
%0 Journal Article
%A R. Michel
%A V. Peschetola
%A G. Vitale
%A J. Étienne
%A A. Duperray
%A D. Ambrosi
%A L. Preziosi
%A C. Verdier
%T Mathematical framework for traction force microscopy
%J ESAIM. Proceedings
%D 2013
%P 61-83
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201342005/
%R 10.1051/proc/201342005
%G en
%F EP_2013_42_a5
R. Michel; V. Peschetola; G. Vitale; J. Étienne; A. Duperray; D. Ambrosi; L. Preziosi; C. Verdier. Mathematical framework for traction force microscopy. ESAIM. Proceedings, Tome 42 (2013), pp. 61-83. doi : 10.1051/proc/201342005. http://geodesic.mathdoc.fr/articles/10.1051/proc/201342005/

Cité par Sources :