Coexisting cycles in a class of 3-D discrete maps
ESAIM. Proceedings, Tome 36 (2012), pp. 170-179.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we consider the class of three-dimensional discrete maps M (x, y, z) = [φ(y), φ(z), φ(x)], where φ : ℝ → ℝ is an endomorphism. We show that all the cycles of the 3-D map M can be obtained by those of φ(x), as well as their local bifurcations. In particular we obtain that any local bifurcation is of co-dimension 3, that is three eigenvalues cross simultaneously the unit circle. As the map M exhibits coexistence of cycles when φ(x) has a cycle of period n ≥ 2, making use of the Myrberg map as endomorphism, we describe the structure of the basins of attraction of the attractors of M and we study the effect of the flip bifurcation of a fixed point.
DOI : 10.1051/proc/201236013

Anna Agliari 1

1 Dept. Economic and Social Science, Catholic University, via Emilia Parmense 84, 49100 Piacenza, Italy
@article{EP_2012_36_a13,
     author = {Anna Agliari},
     title = {Coexisting cycles in a class of {3-D} discrete maps},
     journal = {ESAIM. Proceedings},
     pages = {170--179},
     publisher = {mathdoc},
     volume = {36},
     year = {2012},
     doi = {10.1051/proc/201236013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201236013/}
}
TY  - JOUR
AU  - Anna Agliari
TI  - Coexisting cycles in a class of 3-D discrete maps
JO  - ESAIM. Proceedings
PY  - 2012
SP  - 170
EP  - 179
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201236013/
DO  - 10.1051/proc/201236013
LA  - en
ID  - EP_2012_36_a13
ER  - 
%0 Journal Article
%A Anna Agliari
%T Coexisting cycles in a class of 3-D discrete maps
%J ESAIM. Proceedings
%D 2012
%P 170-179
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201236013/
%R 10.1051/proc/201236013
%G en
%F EP_2012_36_a13
Anna Agliari. Coexisting cycles in a class of 3-D discrete maps. ESAIM. Proceedings, Tome 36 (2012), pp. 170-179. doi : 10.1051/proc/201236013. http://geodesic.mathdoc.fr/articles/10.1051/proc/201236013/

Cité par Sources :