An axisymmetric PIC code based on isogeometric analysis
ESAIM. Proceedings, Tome 32 (2011), pp. 118-133.

Voir la notice de l'article provenant de la source EDP Sciences

Isogeometric analysis has been developed recently to use basis functions resulting from the CAO description of the computational domain for the finite element spaces. The goal of this study is to develop an axisymmetric Finite Element PIC code in which specific spline Finite Elements are used to solve the Maxwell equations and the same spline functions serve as shape function for the particles. The computational domain itself is defined using splines or NURBS.
DOI : 10.1051/proc/2011016

A. Back 1 ; A. Crestetto 1 ; A. Ratnani 1 ; E. Sonnendrücker 1

1 IRMA, Université de Strasbourg and INRIA-Nancy-Grand Est, CALVI Project-Team, France
@article{EP_2011_32_a9,
     author = {A. Back and A. Crestetto and A. Ratnani and E. Sonnendr\"ucker},
     title = {An axisymmetric {PIC} code based on isogeometric analysis},
     journal = {ESAIM. Proceedings},
     pages = {118--133},
     publisher = {mathdoc},
     volume = {32},
     year = {2011},
     doi = {10.1051/proc/2011016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/2011016/}
}
TY  - JOUR
AU  - A. Back
AU  - A. Crestetto
AU  - A. Ratnani
AU  - E. Sonnendrücker
TI  - An axisymmetric PIC code based on isogeometric analysis
JO  - ESAIM. Proceedings
PY  - 2011
SP  - 118
EP  - 133
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/2011016/
DO  - 10.1051/proc/2011016
LA  - en
ID  - EP_2011_32_a9
ER  - 
%0 Journal Article
%A A. Back
%A A. Crestetto
%A A. Ratnani
%A E. Sonnendrücker
%T An axisymmetric PIC code based on isogeometric analysis
%J ESAIM. Proceedings
%D 2011
%P 118-133
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/2011016/
%R 10.1051/proc/2011016
%G en
%F EP_2011_32_a9
A. Back; A. Crestetto; A. Ratnani; E. Sonnendrücker. An axisymmetric PIC code based on isogeometric analysis. ESAIM. Proceedings, Tome 32 (2011), pp. 118-133. doi : 10.1051/proc/2011016. http://geodesic.mathdoc.fr/articles/10.1051/proc/2011016/

Cité par Sources :