Robust numerical schemes for anisotropic diffusion problems, a first step for turbulence modeling in Lagrangian hydrodynamics
ESAIM. Proceedings, Tome 28 (2009), pp. 80-99
Cet article a éte moissonné depuis la source EDP Sciences
Numerous systems of conservation laws are discretized on Lagrangian meshes where cells nodes move with matter. For complex applications, cells shape or aspect ratio often do not insure sufficient accuracy to provide an acceptable numerical solution and use of ALE technics is necessary. Here we are interested with conduction phenomena depending on velocity derivatives coming from the resolution of gas dynamics equations. For that, we propose the study of a mock of second order turbulent mixing model combining an elliptical part and an hyperbolic kernel. The hyperbolic part is approximated by finite-volume centered scheme completed by a remapping step see [7]. A major part of this paper is the discretization of the anisotropic parabolic equation on polygonal distorted mesh. It is based on the scheme described in [9] ensuring the positivity of the numerical solution. We propose an alternative based on the partitioning of polygons in triangles. We show some preliminary results on a weak coupling of hydrodynamics and parabolic equation whose tensor diffusion coefficient depends on Reynolds stresses.
Affiliations des auteurs :
Julien Dambrine 1 ; Philippe Hoch 2 ; Raphaël Kuate 3 ; Jérôme Lohéac 4 ; Jérôme Métral 2 ; Bernard Rebourcet 2 ; Lisl Weynans 1
@article{EP_2009_28_a5,
author = {Julien Dambrine and Philippe Hoch and Rapha\"el Kuate and J\'er\^ome Loh\'eac and J\'er\^ome M\'etral and Bernard Rebourcet and Lisl Weynans},
title = {Robust numerical schemes for anisotropic diffusion problems, a first step for turbulence modeling in {Lagrangian} hydrodynamics},
journal = {ESAIM. Proceedings},
pages = {80--99},
year = {2009},
volume = {28},
doi = {10.1051/proc/2009040},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/2009040/}
}
TY - JOUR AU - Julien Dambrine AU - Philippe Hoch AU - Raphaël Kuate AU - Jérôme Lohéac AU - Jérôme Métral AU - Bernard Rebourcet AU - Lisl Weynans TI - Robust numerical schemes for anisotropic diffusion problems, a first step for turbulence modeling in Lagrangian hydrodynamics JO - ESAIM. Proceedings PY - 2009 SP - 80 EP - 99 VL - 28 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/2009040/ DO - 10.1051/proc/2009040 LA - en ID - EP_2009_28_a5 ER -
%0 Journal Article %A Julien Dambrine %A Philippe Hoch %A Raphaël Kuate %A Jérôme Lohéac %A Jérôme Métral %A Bernard Rebourcet %A Lisl Weynans %T Robust numerical schemes for anisotropic diffusion problems, a first step for turbulence modeling in Lagrangian hydrodynamics %J ESAIM. Proceedings %D 2009 %P 80-99 %V 28 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/2009040/ %R 10.1051/proc/2009040 %G en %F EP_2009_28_a5
Julien Dambrine; Philippe Hoch; Raphaël Kuate; Jérôme Lohéac; Jérôme Métral; Bernard Rebourcet; Lisl Weynans. Robust numerical schemes for anisotropic diffusion problems, a first step for turbulence modeling in Lagrangian hydrodynamics. ESAIM. Proceedings, Tome 28 (2009), pp. 80-99. doi: 10.1051/proc/2009040
Cité par Sources :