H. R. Thieme  1 ; A. Tridane  1 ; Y. Kuang  1
@article{10_1051_mmnp:2008052,
author = {H. R. Thieme and A. Tridane and Y. Kuang},
title = {An {Epidemic} {Model} {With} {Post-Contact} {Prophylaxis} of {Distributed} {Length} {II.} {Stability} and {Oscillations} if {Treatment} is {Fully} {Effective}},
journal = {Mathematical modelling of natural phenomena},
pages = {267--293},
year = {2008},
volume = {3},
number = {7},
doi = {10.1051/mmnp:2008052},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008052/}
}
TY - JOUR AU - H. R. Thieme AU - A. Tridane AU - Y. Kuang TI - An Epidemic Model With Post-Contact Prophylaxis of Distributed Length II. Stability and Oscillations if Treatment is Fully Effective JO - Mathematical modelling of natural phenomena PY - 2008 SP - 267 EP - 293 VL - 3 IS - 7 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008052/ DO - 10.1051/mmnp:2008052 LA - en ID - 10_1051_mmnp:2008052 ER -
%0 Journal Article %A H. R. Thieme %A A. Tridane %A Y. Kuang %T An Epidemic Model With Post-Contact Prophylaxis of Distributed Length II. Stability and Oscillations if Treatment is Fully Effective %J Mathematical modelling of natural phenomena %D 2008 %P 267-293 %V 3 %N 7 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008052/ %R 10.1051/mmnp:2008052 %G en %F 10_1051_mmnp:2008052
H. R. Thieme; A. Tridane; Y. Kuang. An Epidemic Model With Post-Contact Prophylaxis of Distributed Length II. Stability and Oscillations if Treatment is Fully Effective. Mathematical modelling of natural phenomena, Tome 3 (2008) no. 7, pp. 267-293. doi: 10.1051/mmnp:2008052
Cité par Sources :