Optimal Proliferation Rate in a Cell Division Model
Mathematical modelling of natural phenomena, Tome 1 (2006) no. 2, pp. 23-44
Voir la notice de l'article provenant de la source EDP Sciences
We consider a size structured cell population model where a mother cell gives birth to two daughter cells. We know that the asymptotic behavior of the density of cells is given by the solution to an eigenproblem. The eigenvector gives the asymptotic shape and the eigenvalue gives the exponential growth rate and so the Maltusian parameter. The Maltusian parameter depends on the division rule for the mother cell, i.e., symmetric (the two daughter cells have the same size) or asymmetric. We use a min-max principle and a differentiation principle to find the variation of the first eigenvalue with respect to a parameter of asymmetry of the cell division. We prove that the symmetrical division is not always the best fitted division, i.e., the Maltusian parameter may be not optimal.
@article{10_1051_mmnp:2008002,
author = {P. Michel},
title = {Optimal {Proliferation} {Rate} in a {Cell} {Division} {Model}},
journal = {Mathematical modelling of natural phenomena},
pages = {23--44},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {2006},
doi = {10.1051/mmnp:2008002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008002/}
}
TY - JOUR AU - P. Michel TI - Optimal Proliferation Rate in a Cell Division Model JO - Mathematical modelling of natural phenomena PY - 2006 SP - 23 EP - 44 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008002/ DO - 10.1051/mmnp:2008002 LA - en ID - 10_1051_mmnp:2008002 ER -
P. Michel. Optimal Proliferation Rate in a Cell Division Model. Mathematical modelling of natural phenomena, Tome 1 (2006) no. 2, pp. 23-44. doi: 10.1051/mmnp:2008002
Cité par Sources :