Necessary Optimality Conditions for a Lotka-Volterra Three Species System
Mathematical modelling of natural phenomena, Tome 1 (2006) no. 1, pp. 120-132

Voir la notice de l'article provenant de la source EDP Sciences

An optimal control problem is studied for a Lotka-Volterra system of three differential equations. It models an ecosystem of three species which coexist. The species are supposed to be separated from each others. Mathematically, this is modeled with the aid of two control variables. Some necessary conditions of optimality are found in order to maximize the total number of individuals at the end of a given time interval.
DOI : 10.1051/mmnp:2006007

N. C. Apreutesei 1

1 Department of Mathematics, Technical University “Gh. Asachi”, 700506, Iasi, Romania
@article{10_1051_mmnp:2006007,
     author = {N. C. Apreutesei},
     title = {Necessary {Optimality} {Conditions} for a {Lotka-Volterra} {Three} {Species} {System}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {120--132},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2006},
     doi = {10.1051/mmnp:2006007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2006007/}
}
TY  - JOUR
AU  - N. C. Apreutesei
TI  - Necessary Optimality Conditions for a Lotka-Volterra Three Species System
JO  - Mathematical modelling of natural phenomena
PY  - 2006
SP  - 120
EP  - 132
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2006007/
DO  - 10.1051/mmnp:2006007
LA  - en
ID  - 10_1051_mmnp:2006007
ER  - 
%0 Journal Article
%A N. C. Apreutesei
%T Necessary Optimality Conditions for a Lotka-Volterra Three Species System
%J Mathematical modelling of natural phenomena
%D 2006
%P 120-132
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2006007/
%R 10.1051/mmnp:2006007
%G en
%F 10_1051_mmnp:2006007
N. C. Apreutesei. Necessary Optimality Conditions for a Lotka-Volterra Three Species System. Mathematical modelling of natural phenomena, Tome 1 (2006) no. 1, pp. 120-132. doi: 10.1051/mmnp:2006007

Cité par Sources :