Voir la notice de l'article provenant de la source EDP Sciences
M. Darbas 1 ; S. Lohrengel 2 ; B. Sulis 2
@article{MMNP_2025_20_a2, author = {M. Darbas and S. Lohrengel and B. Sulis}, title = {A mathematical model for coregistered data from electroencephalography and diffusive optical tomography}, journal = {Mathematical modelling of natural phenomena}, eid = {4}, publisher = {mathdoc}, volume = {20}, year = {2025}, doi = {10.1051/mmnp/2025001}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2025001/} }
TY - JOUR AU - M. Darbas AU - S. Lohrengel AU - B. Sulis TI - A mathematical model for coregistered data from electroencephalography and diffusive optical tomography JO - Mathematical modelling of natural phenomena PY - 2025 VL - 20 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2025001/ DO - 10.1051/mmnp/2025001 LA - en ID - MMNP_2025_20_a2 ER -
%0 Journal Article %A M. Darbas %A S. Lohrengel %A B. Sulis %T A mathematical model for coregistered data from electroencephalography and diffusive optical tomography %J Mathematical modelling of natural phenomena %D 2025 %V 20 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2025001/ %R 10.1051/mmnp/2025001 %G en %F MMNP_2025_20_a2
M. Darbas; S. Lohrengel; B. Sulis. A mathematical model for coregistered data from electroencephalography and diffusive optical tomography. Mathematical modelling of natural phenomena, Tome 20 (2025), article no. 4. doi : 10.1051/mmnp/2025001. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2025001/
[1] Characterisation of neonatal seizures and their treatment using continuous EEG monitoring: a multicentre experience Arch. Dis. Child Fetal Neonatal Ed. 2019 F493 F501
, , , , , , , , , , , , , , , ,[2] Prognostic value of neonatal EEG following therapeutic hypothermia in survivors of hypoxic-ischemic encephalopathy Clin. Neurophysiol. 2021 2091 2100
, , , , , , , , ,[3] Diffuse optical tomography to investigate the newborn brain Pediatr. Res. 2017 376 386
, ,[4] Neurovascular coupling in the developing neonatal brain at rest Hum. Brain Mapp. 2020 503 519
, , , ,[5] Functional near-infrared spectroscopy in pediatric clinical research: different pathophysiologies and promising clinical applications Neurophotonics 2023 023517
, ,[6] Usefulness of simultaneous EEG-NIRS recording in language studies Brain Lang. 2012 110 123
, , ,[7] NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children Epilepsia 2008 1871 1880
, , , , ,[8] Hemodynamic response to burst-suppressed and discontinuous electroencephalography activity in infants with hypoxic ischemic encephalopathy Neurophotonics 2016 031408 031408
, , , , , , , , , ,[9] Review on mathematical modelling of electroencephalography (EEG) Jahresber. Dtsch. Math.-Ver. 2019 3 39
,[10] Complete electrode model in EEG: relationship and differences to the point electrode model Phys. Med. Biol. 2012 999 1017
, ,[11] Comparison of boundary element and finite element approaches to the EEG forward problem Biomed. Tech. 2012 795 798
, , ,[12] Numerical mathematics of the subtraction method for the modelling of a current dipole in EEG source reconstruction using finite element head models SIAM J. Sci. Comput. 2007 24 45
, , , , ,[13] Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics Opt Express. 2006 12271 12287
, ,[14] Optical tomography in medical imaging Inverse Probl. 1999 R41 R93
[15] Optical tomography: forward and inverse problem Inverse Probl. 2009 123010
,[16] J.P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems. Applied Mathematical Sciences, Vol. 160. Springer (2005).
[17] A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging Neuroimage 2002 1162 1181
,[18] Dynamics of blood flow and oxygenation changes during brain activation: the balloon model Magn. Reson. Med. 1998 855 864
, ,[19] Modeling the hemodynamic response to brain activation Neuroimage 2004 S220 S233
, , ,[20] E.J. Mathias, Computational modelling of neurovascular coupling and the BOLD signal. Ph.D. Thesis, University of Canterbury, United Kingdom (2017).
[21] Integrated models of neurovascular coupling and BOLD signals: responses for varying neural activations Neuroimage 2018 69 86
, , ,[22] A quantitative model for human neurovascular coupling with translated mechanisms from animals PLOS Comput. Biol. 2023 e1010818
, , , , ,[23] On quasi-static models hidden in Maxwell’s equations Appl. Num. Math. 2014 92 106
,[24] O. Faugeras, F. Clément, R. Deriche, R. Keriven, T. Papadopoulo, J. Roberts, T. Viéville, F. Devernay, J. Gomes, G. Hermosillo, P. Kornprobst and D. Lingrand, The inverse EEG and MEG problems: the adjoint state approach. I. The continuous case. Inria, version 1 (1999). hal.inria.fr/docs/00/07/71/12/PDF/RR-3673.pdf.
[25] IT’IS Foundation, https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/, visited on January 17th, 2025.
[26] C. Gabriel, Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies (1996).
[27] Effects of uncertainty in head tissue conductivity and complexity on EEG forward modeling in neonates Hum. Brain Mapp. 2016 3604 3622
, ,[28] Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model Neuroimage 2013 282 293
, , , , , ,[29] EEG in neonates: forward modeling and sensitivity analysis with respect to variations of the conductivity Math. Biosci. Eng. 2018 905 932
, , , ,[30] An inverse source problem in potential analysis Inverse Probl. 2000 651 663
,[31] Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction Commun. Numer. Methods Eng. 2009 711 732
, , , , , , ,[32] Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants Neuroimage 2007 718 727
, , , ,[33] Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements Hum. Brain Mapp. 2013 878 889
, , , , ,[34] Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues Phys. Med. Biol. 1998 1285 1302
, ,[35] Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer Appl. Opt. 2003 2906 2914
,[36] A homogenized cerebrospinal fluid model for diffuse optical tomography in the neonatal head Int. J. Numer. Method Biomed. Eng. 2022 e3538
, , , ,[37] Optical imaginig in medicine. II. Modelling and reconstruction Phys. Med. Biol. 1997 841
,[38] D. Sterratt, B. Graham, A. Gillies and D. Willshaw, Principles of Computational Modelling in Neuroscience. Cambridge University Press (2011).
[39] A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 1952 500 544
,[40] A branching dendritic model of a rodent CA3 pyramidal neurone J. Physiol. 1994 79 95
, , , ,[41] Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism J. Comput. Neurosci. 1994 195 230
, ,[42] EEG background activity described by a large computerized database Clin. Neurophysiol. 2004 665 673
, , , , , ,[43] The modified Beer–Lambert law revisited Phys. Med. Biol. 2006 N91
, ,[44] The MATLAB ODE Suite SIAM J. Sci. Comput. 1997 1 22
,[45] New development in FreeFem++ J. Numer. Math. 2012 251 266
[46] Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations J. Neurophysiol. 2000 495 512
, ,[47] G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neurosciences. Springer (2010).
[48] H. Jiang, Diffuse Optical Tomography. Taylor and Francis (2011).
[49] M. Nourhashemi, Multimodal analysis of neurovascular coupling in the newborn. Ph.D. Thesis, University of Picardie Jules Verne, France (2018).
Cité par Sources :