Wave propagation along the interface between the hyperbolic graded-index and photorefractive crystals
Mathematical modelling of natural phenomena, Tome 20 (2025), article no. 1.

Voir la notice de l'article provenant de la source EDP Sciences

New two types of transverse interface waves propagating along the planar contact the photorefractive and hyperbolic graded-index crystals are described theoretically. The waves are given by exact analytical solutions to the stationary wave equations with spatial dependent coefficients. The waves of the two types differ from each other by the presence of oscillations of the decaying field profile in the photorefractive crystal and the range of existence. Influence on the wave profiles of the system parameters such as the effective refractive index, temperature, and the hyperbolic profile parameters (the interface refractive index, and the characteristic distance) are analyzed in details. New features of the distribution of the maxima and minima of the field profile and the depth of its penetration into crystals depending on the values of these parameters are specified.
DOI : 10.1051/mmnp/2024023

S.E. Savotchenko 1, 2, 3

1 MIREA – Russian Technological University, Vernadsky Ave., 78, 119454 Moscow, Russia
2 Russian Sergo Ordzhonikidze State Geological Prospecting University Miklukho-Maklaya St., 23, 117997 Moscow, Russia
3 Moscow Technical University of Communications and Informatics, Aviamotornaya St., 8a, 111024 Moscow, Russia
@article{MMNP_2025_20_a0,
     author = {S.E. Savotchenko},
     title = {Wave propagation along the interface between the hyperbolic graded-index and photorefractive crystals},
     journal = {Mathematical modelling of natural phenomena},
     eid = {1},
     publisher = {mathdoc},
     volume = {20},
     year = {2025},
     doi = {10.1051/mmnp/2024023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024023/}
}
TY  - JOUR
AU  - S.E. Savotchenko
TI  - Wave propagation along the interface between the hyperbolic graded-index and photorefractive crystals
JO  - Mathematical modelling of natural phenomena
PY  - 2025
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024023/
DO  - 10.1051/mmnp/2024023
LA  - en
ID  - MMNP_2025_20_a0
ER  - 
%0 Journal Article
%A S.E. Savotchenko
%T Wave propagation along the interface between the hyperbolic graded-index and photorefractive crystals
%J Mathematical modelling of natural phenomena
%D 2025
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024023/
%R 10.1051/mmnp/2024023
%G en
%F MMNP_2025_20_a0
S.E. Savotchenko. Wave propagation along the interface between the hyperbolic graded-index and photorefractive crystals. Mathematical modelling of natural phenomena, Tome 20 (2025), article  no. 1. doi : 10.1051/mmnp/2024023. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024023/

[1] B.A. Malomed, D. Mihalache Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results Rom. Jo. Phys. 2019 106

[2] D. Mihalache Localized structures in optical and matter-wave media: a selection of recent studies Roman. Rep. Phys. 2021 403

[3] D. Mihalache Localized structures in optical media and Bose–Einstein condensates: an overview of recent theoretical and experimental results Roman. Rep. Phys. 2024 402

[4] S.M. Shandarov, E.S. Shandarov Photorefractive slit waves Tech. Phys. Lett. 1997 586 588

[5] T.H. Zhang, X.K. Ren, B.H. Wang, C.B. Lou, Z.J. Hu, W.W. Shao, Y.H. Xu, H.Z. Kang, J. Yang, D.P. Yang, L. Feng, J.J. Xu Surface waves with photorefractive nonlinearity Phys. Rev. A 2007 013827

[6] Z. Luo, F. Liu, Y. Xu, H. Liu, T. Zhang, J. Xu, J. Tian Dark surface waves in self-focusing media with diffusion and photovoltaic nonlinearities Opt. Express 2013 15075 15080

[7] P.F. Qi, Z.J. Hu, R. Han, T.H. Zhang, J.G. Tian, J.J. Xu Apodized waveguide arrays induced by photorefractive nonlinear surface waves Opt. Express 2015 31144 31149

[8] L. Chun-Yang, J. Ying, S. De, M. Yi-Ning, Y. Ji-Kai, C. Wei-Jun Guided modes in thin layer waveguide induced by photorefractive surface waves Chinese J. Luminescence 2018 1572 1578

[9] S.E. Savotchenko Propagation of surface waves along a dielectric layer in a photorefractive crystal with a diffusion mechanism for the nonlinearity formation Quant. Electron. 2019 850 856

[10] S.E. Savotchenko Nonlinear surface TM waves in a Kerr defocusing nonlinear slab sandwiched between photorefractive crystals Solid State Commun. 2019 32 36

[11] S.E. Savotchenko Nonlinear surface waves at the interface between optical media with different nonlinearity induction mechanisms JETP 2019 159 167

[12] S.E. Savotchenko Effect of the dark illumination intensity on the characteristics of surface waves propagating along the interface between photorefractive and nonlinear Kerr crystals Russ. Phys. J. 2020 160 170

[13] S.E. Savotchenko Surface waves at the boundary of a photorefractive crystal and a medium with positive Kerr nonlinearity Phys. Solid State 2020 1011 1016

[14] S.E. Savotchenko Surface waves at the boundary of a medium with a refractive index switching and a crystal with the diffusion-type photorefractive nonlinearity Phys. Solid State 2020 1415 1420

[15] B.A. Usievich, D.Kh. Nurligareev, V.A. Sychugov, L.I. Ivleva, P.A. Lykov, N.V. Bogodaev Nonlinear surface waves on the boundary of a photorefractive crystal Quant. Electron. 2010 437 440

[16] S.A. Chetkin, I.M. Akhmedzhanov Optical surface wave in a crystal with diffusion photorefractive nonlinearity Quant. Electron. 2011 980 985

[17] B.A. Usievich, D.Kh. Nurligareev, V.A. Sychugov, L.I. Ivleva, P.A. Lykov, N.V. Bogodaev Surface photorefractive wave on the boundary of a photorefractive metal-coated crystal Quant. Electron. 2011 262 266

[18] D.Kh. Nurligareev, B.A. Usievich, V.A. Sychugov, L.I. Ivleva Characteristics of surface photorefractive waves in a nonlinear SBN-75 crystal coated with a metal film Quant. Electron. 2013 14 20

[19] A.B. Shvartsburg and A. Maradudin, Waves in Gradient Metamaterials. World Scientific, Singapore (2013) 339.

[20] S.J. Al-Bader, H.A. Jamid Graded-index optical waveguides with nonlinear cladding J. Opt. Soc. Am. A 1988 374 379

[21] M.J. Adams, An Introduction to Optical Waveguides. Wiley, Chichester (1981).

[22] C.-L. Chen, Foundations for Guided-wave Optics. John Wiley Sons, Inc. (2005) 462.

[23] P. D’Ancona Kato smoothing and strichartz estimates for wave equations with magnetic potentials Commun. Math. Phys. 2015 1 16

[24] F. Cacciafesta, P. D’Ancona, R. Lucà Renato Helmholtz and dispersive equations with variable coefficients on exterior domains SIAM J. Math. Anal. 2016 1798 1832

[25] A.D. Polyanin and A.I. Zhurov, Separation of Variables and Exact Solutions to Nonlinear PDEs. CRC Press, Taylor and Francis Group, LLC, Boca Raton, London (2022) 382.

[26] Z. Cao, Y. Jiang, Q. Shen, X. Dou, Y. Chen Exact analytical method for planar optical waveguides with arbitrary index profile J. Opt. Soc. Am. A 1999 2209 2212

[27] N.A. Kudryashov Optical solitons of mathematical model with arbitrary refractive index Optik 2020 165391

[28] N.A. Kudryashov Optical solitons of the Chen–Lee–Liu equation with arbitrary refractive index Optik 2021 167935

[29] G. Akram, M. Sadaf, I. Zainab The dynamical study of Biswas-–Arshed equation via modified auxiliary equation method Optik 2022 168614

[30] N.A. Kudryashov, A. Biswas Optical solitons of nonlinear Schrödinger’s equation with arbitrary dual-power law parameters Optik 2022 168497

[31] N.A. Kudryashov Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index Optik 2022 168888

[32] S.A. Odintsov, E.H. Lock, E.N. Beginin, A.V. Sadovnikov Nonreciprocal propagation of spin waves in a bilayer magnonic waveguide based on yttrium-iron garnet films Russ. Technol. J. 2022 55 64

[33] Y. Yıldırım, A. Biswas, A.H. Kara, M. Ekici, E.M.E. Zayed, A.K. Alzahrani, M.R. Belic Optical solitons and conservation law with Kudryashov’s form of arbitrary refractive index J. Opt. (India) 2021 542 547

[34] E.M.E. Zayed, A.G. Al-Nowehy, M.E.M. Alngar, A. Biswas, M. Asma, M. Ekici, A.K. Alzahrani, M.R. Belic Highly dispersive optical solitons in birefringent fibers with four nonlinear forms using Kudryashov’s approach J. Opt. (India) 2021 120 131

[35] J. Vega-Guzman, A. Biswas, M. Asma, A.R. Seadawy, M. Ekici, A.K. Alzahrani, M.R. Belic Optical soliton perturbation with parabolic–nonlocal combo nonlinearity: undetermined coefficients and semi-inverse variational principle J. Opt. (India) 2022 22 28

[36] A. Jawad, M. Abu-Al Shaeer Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities by two methods Rafidain J. Eng. Sci. 2023 1 8

[37] M. Jawad, A. Jafar, Y. Yildirim, A. Biswas, I.K. Ibraheem, A.S. Alshomrani Highly dispersive optical solitons with differential group delay for kerr law of self-phase modulation by Sardar sub-equation approach Contemp. Math. 2024 3839 383957

[38] A.J.M. Jawad, A. Biswas, Y. Yildirim, A.S. Alshomrani Highly dispersive optical solitons with quadratic-cubic nonlinear form of self-phase modulation by Sardar sub-equation approach Contemp. Math. 2024 1300 1322

[39] N. Jihad, M. Abd Almuhsan Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques Rafidain J. Eng. Sci. 2023 81 92

[40] A.J.M. Jawad, A. Biswas, Y. Yildirim, A.S. Alshomrani A fresh perspective on the concatenation model in optical fibers with Kerr law of self-phase modulation Eng. Sci. Technol. 2024 195 208

[41] A.J.M. Jawad, A. Biswas, Y. Yildirim, A.S. Alshomrani Dark-singular straddled optical solitons for the dispersive concatenation model with power-law of self-phase modulation by Tanh-Coth approach Contemp. Math. 2024 3198 3214

[42] A. Jawad, A. Biswas Solutions of resonant nonlinear Schrödinger’s equation with exotic non-Kerr law nonlinearities Rafidain J. Eng. Sci. 2023 43 50

[43] T. Aytug, A. Lupini, G. Jellison, P.C. Joshi, I. Ivanov, T. Liu, P. Wang, R. Menon, R. Trejo, E. Lara-Curzio, S. Hunter, J. Simpson, P. Paranthaman, D. Christen Monolithic graded-refractive-index glass-based antireflective coatings: broadband/omnidirectional light harvesting and self cleaning characteristics J. Mater. Chem. C 2015 5440

[44] J. Zheng, W. Zhao, B. Zhao, C. Hou, Z. Li, G. Li, Q. Gao, P. Ju, W. Gao, S. She, P. Wu, W. Li 4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique Opt. Mater. Express 2017 1259 1266

[45] F. Gaufillet, E. Akmansoy Design and experimental evidence of a flat graded-index photonic crystal lens J. Appl. Phys. 2013 083105

[46] H. Rauh, G.I. Yampolskaya, S.V. Yampolskii Optical transmittance of photonic structures with linearly graded dielectric constituents New J. Phys. 2010 073033

[47] K. Ratra, M. Singh, A.K. Goyal Design and analysis of omni-directional solar spectrum reflector using one-dimensional photonic crystal J. Nanophoton. 2020 026005

[48] Y.B. Kim, J.W. Cho, Y.J. Lee, B. Dukkyu, S.-K. Kim High-index-contrast photonic structures: a versatile platform for photon manipulation Light Sci. Appl. 2022 316

[49] B.K. Singh, A. Bijalwan, P.C. Pandey, V. Rastogi Photonic bandgaps engineering in double graded hyperbolic, exponential and linear index materials embedded one-dimensional photonic crystals Eng. Res. Express 2019 025004

[50] B.K. Singh, A. Bijalwan, P.C. Pandey, V. Rastogi Multi-channel photonic bandgap consequences in one-dimensional linear, exponential, and hyperbolic graded-index photonic crystals J. Opt. Soc. Am. B 2020 523

[51] D. Dash, J. Saini Hyperbolic graded index biophotonic cholesterol sensor with improved sensitivity Progr. Electromagnet. Res. M 2023 165 176

[52] P. Yeh, Optical Wave in Layered Media. Wiley, New Jersey (1988).

[53] S.E. Savotchenko The surface waves propagating along the contact between the layer with the constant gradient of refractive index and photorefractive crystal J. Opt. 2022 045501

[54] S.E. Savotchenko Waveguide properties of interface separating a photorefractive crystal with diffusion nonlinearity and an exponential graded-index medium Phys. Lett. A 2022 128516

[55] S.E. Savotchenko Surface waves propagating along the interface between parabolic graded-index medium and photorefractive crystal with diffusion nonlinearity Physica B: Condensed Matter 2023 414434

[56] S.E. Savotchenko Temperature controlled waveguide properties of the linearly graded-index film in semiconductor crystal with the photorefractive nonlinearity Appl. Phys. B: Lasers Opt. 2023 7

[57] S.E. Savotchenko The effect of dielectric slab between photorefractive crystal and graded-index medium on the surface wave properties Physica E 2023 115622

[58] S.E. Savotchenko, Nonlinear waves in a composite optical structure containing a dielectric layer between a photorefractive crystal and a medium with an exponential index profile. Waves in Random and Complex Media (2023).

[59] S.E. Savotchenko, Nonlinear surface waves propagating along an interface between the Kerr nonlinear and hyperbolic graded-index crystals. J. Opt. (India) 53 (2024).

[60] S.E. Savotchenko Features of the surface wave propagation along the interface between the hyperbolic graded-index layer and nonlinear medium with a step change in the dielectric constant Phys. Lett. A 2024 129822

[61] S.E. Savotchenko Effect of the temperature on the redistribution of an energy flux carried by surface waves along the interface between crystals with different mechanisms of formation of a nonlinear response JETP Lett. 2019 744 748

[62] W. Van Assche, Ordinary Special Functions. Encyclopedia of Mathematical Physics edited by J.-P. Françoise, G. L. Naber and T.S. Tsun. Academic Press, New York (2006) 637–645.

[63] V.K. Chaubey, K.K. Dey, P. Khastgir Field intensity and power confinement of four-layer slab waveguides with various refractive index profiles in the guiding region J. Opt. Commun. 1994 95 100

[64] L.V. Fedorov, K.D. Ljahomskaja Nonlinear surface waves with allowance for the saturation effect Tech. Phys. Lett. 1997 915 916

[65] O.V. Korovai, P.I. Khadzhi Nonlinear asymmetric waves induced in a symmetrical three-layer structure by the generation of excitons and biexcitons in semiconductors. Phys. Solid State 2008 1116 1120

[66] O.V. Korovai Nonlinear s-polarized quasi-surface waves in the symmetric structure with a metamaterial core Phys. Solid State 2015 1456 1462

Cité par Sources :