Modeling Fibrous Dysplasia Progression and its Therapeutic Intervention
Mathematical modelling of natural phenomena, Tome 20 (2025), article no. 3.

Voir la notice de l'article provenant de la source EDP Sciences

Fibrous dysplasia (FD) is a rare, benign bone disorder characterized by the abnormal formation of tissue in a mosaic distribution. It can affect multiple bones, causing severe symptoms such as pathological fractures, spinal curvature, and reduced stature, as part of the so-called McCune–Albright Syndrome (MAS). FD originates from postzygotic gain-of-function mutations in the GNAS gene. While treatments for other skeletal diseases like the monoclonal antibody denosumab, used in osteoporosis, have been applied to FD, the absence of a quantitative understanding of the dynamics of lesional cell populations limits both in-depth analysis and therapy optimization. This study introduces a novel pharmacokinetic–pharmacodynamic mathematical model specifically designed for FD, enriched with in vitro/ex vivo data from denosumab assays. Our framework builds upon existing mathematical approaches for osteoporosis, focusing on two cell populations: (1) variant-bearing FD osteoprogenitors and (2) wild-type (WT) osteoprogenitors displaying transferred FD phenotypes. The resulting model paves the way for future in vitro assays targeting FD and related skeletal conditions. Our analyses reveal that abnormal cell proliferation in FD may be due to its atypical inhibition, providing new insights for potential treatment strategies. Furthermore, our simulations identify a promising biomarker for FD diagnosis.
DOI : 10.1051/mmnp/2024022

Juan C. Beltran-Vargas 1 ; Luis F. de Castro 2 ; Gabriel F. Calvo 1 ; Víctor M. Pérez-García 1

1 Department of Mathematics & Mathematical Oncology Laboratory (MOLAB), University of Castilla La-Mancha, Edificio Politecnico, Avda. Camilo Jose Cela s/n, Ciudad Real, 13071 Castilla La-Mancha, Spain
2 National Institutes of Health, Building 30, Room 209, MSC 4320, Bethesda, MD 20892-4320, USA
@article{MMNP_2025_20_a3,
     author = {Juan C. Beltran-Vargas and Luis F. de Castro and Gabriel F. Calvo and V{\'\i}ctor M. P\'erez-Garc{\'\i}a},
     title = {Modeling {Fibrous} {Dysplasia} {Progression} and its {Therapeutic} {Intervention}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {3},
     publisher = {mathdoc},
     volume = {20},
     year = {2025},
     doi = {10.1051/mmnp/2024022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024022/}
}
TY  - JOUR
AU  - Juan C. Beltran-Vargas
AU  - Luis F. de Castro
AU  - Gabriel F. Calvo
AU  - Víctor M. Pérez-García
TI  - Modeling Fibrous Dysplasia Progression and its Therapeutic Intervention
JO  - Mathematical modelling of natural phenomena
PY  - 2025
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024022/
DO  - 10.1051/mmnp/2024022
LA  - en
ID  - MMNP_2025_20_a3
ER  - 
%0 Journal Article
%A Juan C. Beltran-Vargas
%A Luis F. de Castro
%A Gabriel F. Calvo
%A Víctor M. Pérez-García
%T Modeling Fibrous Dysplasia Progression and its Therapeutic Intervention
%J Mathematical modelling of natural phenomena
%D 2025
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024022/
%R 10.1051/mmnp/2024022
%G en
%F MMNP_2025_20_a3
Juan C. Beltran-Vargas; Luis F. de Castro; Gabriel F. Calvo; Víctor M. Pérez-García. Modeling Fibrous Dysplasia Progression and its Therapeutic Intervention. Mathematical modelling of natural phenomena, Tome 20 (2025), article  no. 3. doi : 10.1051/mmnp/2024022. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024022/

[1] L.S. Weinstein, A. Shenker, P.V. Gejman, M.J. Merino, E. Friedman, A.M. Spiegel Activating mutations of the stimulatory g protein in the Mccune–Albright syndrome N. Engl. J. Med. 1991 1688 1695

[2] J.Y. Wu, P. Aarnisalo, M. Bastepe, P. Sinha, K. Fulzele, M.K. Selig, M. Chen, I.J. Poulton, L.E. Purton, N.A. Sims, L.S. Weinstein, H.M. Kronenberg Gas enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice J. Clin. Invest. 2011 3492 3504

[3] M. Riminucci, B. Liu, A. Corsi, A. Shenker, A.M. Spiegel, P.G. Robey, P. Bianco The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gαs gene: site-specific patterns and recurrent histological hallmarks J. Pathol. 1999 249 258

[4] S. Piersanti, C. Remoli, I. Saggio, A. Funari, S. Michienzi, B. Sacchetti, P.G. Robey, M. Riminucci, P. Bianco Transfer, analysis, and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors J. Bone Miner. Res. 2010 1103 1116

[5] P. Bianco, S.A. Kuznetsov, M. Riminucci, L.W. Fisher, A.M. Spiegel, P.G. Robey Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and gsalpha-mutated skeletal progenitor cells J. Clin. Invest. 1998 1737 1744

[6] I. Hartley, M. Zhadina, M.T. Collins, A.M. Boyce Fibrous dysplasia of bone and Mccune–Albright syndrome: a bench to bedside review Calcif. Tissue Int. 2019 517 529

[7] A.M. Boyce, M.T. Collins Fibrous dysplasia/McCune–Albright syndrome: a rare, mosaic disease of Gαs activation Endocr. Rev. 2019 345 370

[8] I.R. Reid, E.O. Billington Drug therapy for osteoporosis in older Adults Lancet 2022 1080 1092

[9] A.M. Boyce, W.H. Chong, J. Yao, R.I. Gafni, M.H. Kelly, C.E. Chamberlain, C. Bassim, N. Cherman, M. Ellsworth, J.Z. Kasa-Vubu, F.A. Farley, A.A. Molinolo, N. Bhattacharyya, M.T. Collins Denosumab treatment for fibrous dysplasia J. Bone Miner. Res. 2012 1462 1470

[10] S. Ferrari, B. Langdahl Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone Nat. Rev. Rheumatol. 2023 307 317

[11] R.E. Coleman, P.I. Croucher, A.R. Padhani, P. Clézardin, E. Chow, M. Fallon, T. Guise, S. Colangeli, R. Capanna, L. Costa Bone Metastases Nat. Rev. Dis. Primers 2020 83

[12] L. Corral Gudino Paget’s disease of bone: 1877–2023. Etiology, and management of a disease on epidemiologic transition Med. Clín. (Engl. Ed.) 2023 207 216

[13] D. Huang, C. Zhao, R. Li, B. Chen, Y. Zhang, Z. Sun, J. Wei, H. Zhou, Q. Gu, J. Xu Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble rank–RANKL interactions and treat osteoporosis Nat. Commun. 2022 5338

[14] J.B. Regard, N. Cherman, D. Palmer, S.A. Kuznetsov, F.S. Celi, J.-M. Guettier, M. Chen, N. Bhattacharyya, J. Wess, S.R. Coughlin, L.S. Weinstein, M.T. Collins, P.G. Robey, Y. Yang Wnt/β-catenin signaling is differentially regulated by gα proteins and contributes to fibrous dysplasia Proc. Natl. Acad. Sci. U.S.A. 2011 20101 20106

[15] N. Bhattacharyya, M. Wiench, C. Dumitrescu, B.M. Connolly, T.H. Bugge, H.V. Patel, R.I. Gafni, N. Cherman, M. Cho, G.L. Hager, M.T. Collins Mechanism of fgf23 processing in fibrous dysplasia J. Bone Miner. Res. 2012 1132 1141

[16] C. Hopkins, L.F. De Castro, A. Corsi, A. Boyce, M.T. Collins, M. Riminucci, A.-M. Heegaard Fibrous dysplasia animal models: a systematic review Bone 2022 116270

[17] J.M. Whitlock, L.F. De Castro, M.T. Collins, L.V. Chernomordik, A.M. Boyce An inducible explant model of osteoclast–osteoprogenitor coordination in exacerbated osteoclastogenesis iScience 2023 1064703

[18] L.F. De Castro, A.B. Burke, H.D. Wang, J. Tsai, P. Florenzano, K.S. Pan, N. Bhattacharyya, A.M. Boyce, R.I. Gafni, A.A. Molinolo, P.G. Robey, M.T. Collins Activation of RANK/RANKL/OPG pathway is involved in the pathophysiology of fibrous dysplasia and associated with disease burden J. Bone Miner. Res. 2019 290 294

[19] P. Pivonka, J. Zimak, D.W. Smith, B.S. Gardiner, C.R. Dunstan, N.A. Sims, T. John Martin, G.R. Mundy Model structure and control of bone remodeling: a theoretical study Bone 2008 249 263

[20] I. Ait Oumghar, A. Barkaoui and P. Chabrand, Toward a mathematical modeling of diseases’ impact on bone remodeling: Technical review. Front. Bioeng. Biotechnol. 8 (2020).

[21] S. Trichilo and P. Pivonka, Application of Disease System Analysis to Osteoporosis: From Temporal to Spatio-Temporal Assessment of Disease Progression and Intervention. Springer International Publishing, Cham (2018) 61–121.

[22] J.L. Calvo-Gallego, P. Pivonka, R. Ruiz-Lozano, J. Martínez-Reina Mechanistic PK–PD model of alendronate treatment of postmenopausal osteoporosis predicts bone site-specific response Front. Bioeng. Biotechnol. 2022 940620

[23] X. Zhao, P. Deng, R. Iglesias-Bartolome, P. Amornphimoltham, D.J. Steffen, Y. Jin, A.A. Molinolo, L.F. De Castro, D. Ovejero, Q. Yuan, Q. Chen, X. Han, D. Bai, S.S. Taylor, Y. Yang, M.T. Collins, J.S. Gutkind Expression of an active Gαs mutant in skeletal stem cells is sufficient and necessary for fibrous dysplasia initiation and maintenance Proc. Natl. Acad. Sci. U.S.A. 2018 E428 E437

[24] B. Palmisano, R. Labella, S. Donsante, C. Remoli, E. Spica, I. Coletta, G. Farinacci, M. Dello Spedale Venti, I. Saggio, M. Serafini, P.G. Robey, A. Corsi, M. Riminucci Gsαr201c and estrogen reveal different subsets of bone marrow adiponectin expressing osteogenic cells Bone Res. 2022 50

[25] X. Chen, X. Zhi, J. Wang, J. Su Rankl signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation Bone Res. 2018 34

[26] Y. Ikebuchi, S. Aoki, M. Honma, M. Hayashi, Y. Sugamori, M. Khan, Y. Kariya, G. Kato, Y. Tabata, J.M. Penninger, N. Udagawa, K. Aoki, H. Suzuki Coupling of bone resorption and formation by RANKL reverse signalling Nature 2018 195 200

[27] A. Salhotra, H.N. Shah, B. Levi, M.T. Longaker Mechanisms of bone development and repair Nat. Rev. Mol. Cell Biol. 2020 696 711

[28] W. Sohn, M.A. Simiens, K. Jaeger, S. Hutton, G. Jang The pharmacokinetics and pharmacodynamics of deno- sumab in patients with advanced solid tumours and bone metastases: a systematic review Br. J. Clin. Pharmacol. 2014 477 487

[29] L. Wang, X. You, L. Zhang, C. Zhang, W. Zou Mechanical regulation of bone remodelling Bone Res. 2022 16

[30] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, J. Timmer Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood Bioinformatics 2009 1923 1929

[31] P.J. Marie, C. De Pollak, P. Chanson, A. Lomri Increased proliferation of osteoblastic cells expressing the activating GS alpha mutation in monostotic and polyostotic fibrous dysplasia Am. J. Pathol. 1997 1059 1069

[32] T. Xiao, Y. Fu, W. Zhu, R. Xu, L. Xu, P. Zhang, Y. Du, J. Cheng, H. Jiang HDAC8, a potential therapeutic target, regulates proliferation and differentiation of bone marrow stromal cells in fibrous dysplasia Stem Cells Transl. Med. 2018 148 161

[33] S.L. Teitelbaum Bone resorption by osteoclasts Science 2000 1504 1508

[34] S.K. Verma, L.V. Chernomordik, K. Melikov An improved metrics for osteoclast multinucleation Sci. Rep. 2018 1768

[35] J.S. Lee, E.J. Fitzgibbon, Y.R. Chen, H.J. Kim, L.R. Lustig, S.O. Akintoye, M.T. Collins, L.B. Kaban Clinical guidelines for the management of craniofacial fibrous dysplasia Orphanet J. Rare Dis. 2012 S2

[36] P. Romanet, P. Philibert, F. Fina, T. Cuny, C. Roche, L. Ouafik, F. Paris, R. Reynaud, A. Barlier Using digital droplet polymerase chain reaction to detect the mosaic ¡em¿gnas¡/em¿ mutations in whole blood DNA or circulating cell-free DNA in fibrous dysplasia and Mccune–Albright syndrome J. Pediatr. 2019 281 285.e4

[37] L.F. De Castro, Z. Michel, K. Pan, J. Taylor, V. Szymczuk, S. Paravastu, B. Saboury, G.Z. Papadakis, X. Li, K. Milligan, B. Boyce, S.M. Paul, M.T. Collins, A.M. Boyce Safety and efficacy of denosumab for fibrous dysplasia of bone N. Engl. J. Med. 2023 766 768

[38] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index Comput. Phys. Commun. 2010 259 270

Cité par Sources :