Voir la notice de l'article provenant de la source EDP Sciences
Ana P. Lemos-Paião 1 ; Sofia O. Lopes 2 ; M. D. R. de Pinho 3
@article{MMNP_2025_20_a1, author = {Ana P. Lemos-Pai\~ao and Sofia O. Lopes and M. D. R. de Pinho}, title = {A parametric optimal control problem applied to daily irrigation}, journal = {Mathematical modelling of natural phenomena}, eid = {2}, publisher = {mathdoc}, volume = {20}, year = {2025}, doi = {10.1051/mmnp/2024020}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024020/} }
TY - JOUR AU - Ana P. Lemos-Paião AU - Sofia O. Lopes AU - M. D. R. de Pinho TI - A parametric optimal control problem applied to daily irrigation JO - Mathematical modelling of natural phenomena PY - 2025 VL - 20 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024020/ DO - 10.1051/mmnp/2024020 LA - en ID - MMNP_2025_20_a1 ER -
%0 Journal Article %A Ana P. Lemos-Paião %A Sofia O. Lopes %A M. D. R. de Pinho %T A parametric optimal control problem applied to daily irrigation %J Mathematical modelling of natural phenomena %D 2025 %V 20 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024020/ %R 10.1051/mmnp/2024020 %G en %F MMNP_2025_20_a1
Ana P. Lemos-Paião; Sofia O. Lopes; M. D. R. de Pinho. A parametric optimal control problem applied to daily irrigation. Mathematical modelling of natural phenomena, Tome 20 (2025), article no. 2. doi : 10.1051/mmnp/2024020. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024020/
[1] Irrigation technology and water conservation: a review of the theory and evidence Rev. Environ. Econ. Policy 2020 216 239
, ,[2] Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing Agric. Water Manag. 2010 892 900
, ,[3] About modeling and control strategies for scheduling crop irrigation IFAC-PapersOnLine 2019 43 48
, , , ,[4] Optimal control applied to an irrigation planning problem: a real case study in Portugal Int. J. Hydrol. Sci. Technol. 2019 173 188
, ,[5] Nonlinear optimal control of cascaded irrigation canals with conservation law PDEs Control Eng. Pract. 2020 104407
, , ,[6] Water–yield relations and optimal irrigation scheduling of wheat in the Mediterranean region Agric. Water Manag. 1999 195 211
,[7] Analytical study for different extremal state solutions of an irrigation optimal control problem with field capacity modes Int. J. Appl. Comput. Math. 8 2022 27
, ,[8] S.O. Lopes, F.A.C.C. Fontes, A.C.D. Caldeira and R.M.S. Pereira, Optimal control of irrigation with field capacity modes: characterizing the minimal water consumption solution, in 2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO) (2018) 300–305.
[9] Optimal control applied to an irrigation planning problem Math. Probl. Eng. 2016 2016
, , , ,[10] C. Büskens and H. Maurer, *Sensitivity analysis and real-time control of parametric optimal control problems using nonlinear programming methods, in Online Optimization of Large Scale Systems. Springer, Berlin (2001) 57–68.
[11] A.B. Berkelaar, K. Roos and T. Terlaky, The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming. Springer US, Boston, MA (1997) 159–202.
[12] M. Grötschel, S.O. Krumke and J. Rambau, editors, Online Optimization of Large Scale Systems. Springer-Verlag, Berlin (2001).
[13] Sensitivity analysis in convex quadratic optimization: Simultaneous perturbation of the objective and right-hand-side vectors Algorith. Oper. Res. 2007 94 111
, ,[14] Sensitivity analysis in convex quadratic optimization: invariant support set interval Optimization 2005 59 79
,[15] A numerical method for an optimal control problem with minimum sensitivity on coefficient variation Appl. Math. Computat. 2011 1180 1190
, ,[16] C. Büskens, Optimierungmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen. Westfälischen Wilhelms-Universitat Münster (1998).
[17] C. Büskens and M. Gerdts, Emergency Landing of a Hypersonic Flight System: A Corrector Iteration Method for Admissible Real-time Optimal Control Approximations. Munich, Germany (2003).
[18] SQP-methods for Solving Optimal Control Problems with Control and State Constraints: Adjoint Variables Sensitivity Analysis and reAl-time Control 2000 85 108
,[19] M. Gerdts, Optimal Control of ODEs and DAEs. De Gruyter Textbook. Walter de Gruyter Co., Berlin (2012).
[20] A. Reiter, H. Gattringer and A. Müller, Real-time computation of inexact minimum-energy trajectories using parametric sensitivities, in Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, Vol. 49, edited by C. Ferraresi and G. Quaglia. Springer, Cham (2018).
[21] A. Reiter, A. Müller and H. Gattringer, Rapid nearly-optimal rendezvous trajectory planning using parameter Sensitivities, in ROMANSY 22 – Robot Design, Dynamics and Control. CISM International Centre for Mechanical Sciences (Courses and Lectures), Vol. 584, edited by V. Arakelian and P. Wenger. Springer, Cham (2019).
[22] C. Specht, M. Gerdts and R. Lampariello, Neighborhood estimation in sensitivity-based update rules for real-time optimal control, in 2020 European Control Conference (ECC) (2020) 1999–2006.
[23] C. Büskens and H. Maurer, *Sensitivity analysis and real-time optimization of parametric nonlinear programming problems, in Online Optimization of Large Scale Systems. Springer, Berlin (2001) 3–16.
[24] Sensitivity analysis for nonlinear programming using penalty methods Math. Programm. 1976 287 311
[25] A.V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming, Vol. 165 of Mathematics in Science and Engineering. Academic Press, Inc., Orlando, FL (1983).
[26] Perturbed Kuhn–Tucker points and rates of convergence for a class of nonlinear-programming algorithms Math. Program. 1974 1 16
[27] Global sensitivity analysis challenges in biological systems modeling Ind. Eng. Chem. Res. 2009 7168 7180
, , ,[28] A. Kiparissides, M. Rodriguez-Fernandez, S. Kucherenko, A. Mantalaris and E. Pistikopoulos, Application of global sensitivity analysis to biological models, in 18th European Symposium on Computer Aided Process Engineering, Vol. 25 of Computer Aided Chemical Engineering, edited by B. Braunschweig and X. Joulia. Elsevier (2008) 689–694.
[29] Application of global sensitivity analysis to determine goals for design of experiments: an example study on antibody-producing cell cultures Biotechnol. Prog. 2005 1128 1135
, , ,[30] An algorithm for multi-parametric quadratic programming and explicit MPC solutions Automatica 2003 489 497
, ,[31] C. Büskens, H.J. Pesch and S. Winderl, Real-time solutions of bang-bang and singular optimal control Problems, in Online Optimization of Large Scale Systems. Springer, Berlin (2001) 129–142.
[32] H. Maurer and G. Vossen, Sufficient conditions and sensitivity analysis for optimal bang-bang control problems with state constraints, in Proceedings of the 23rd IFIP Conference on System Modeling and Optimization (2007).
[33] A survey of the maximum principles for optimal control problems with state constraints SIAM Rev. 1995 181 218
, ,[34] L.W. Neustadt, Optimization. Princeton University Press, Princeton, N.J. (1976).
[35] A. Barclay, P.E. Gill and J.B. Rosen, SQP methods and their application to numerical optimal control, in Variational Calculus, Optimal Control and Applications (Trassenheide, 1996), Vol. 124 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1998) 207–222.
[36] Survey of numerical methods for trajectory optimization J. Guid. Control Dyn. 1998 193 207
[37] R. Fletcher, Practical Methods of Optimization. Vol. 2. John Wiley Sons, Ltd., Chichester (1981).
[38] R.G. Allen, L.S. Pereira, D. Raes and M. Smith, Crop evapotranspiration – guidelines for computing crop water requirements. Technical report, Food and Agriculture Organization: Irrigation and drainage paper 56 (1998).
[39] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming. Scientific Press series. Thomson, Brooks, Cole (2003).
[40] D.M. Gay, The AMPL modeling language: an aid to formulating and solving optimization problems, in Numerical Analysis and Optimization, Vol. 134 of Springer Proc. Math. Stat. Springer, Cham (2015) 95–116.
[41] On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming Math. Program. 2006 25 57
,Cité par Sources :