A parametric optimal control problem applied to daily irrigation
Mathematical modelling of natural phenomena, Tome 20 (2025), article no. 2.

Voir la notice de l'article provenant de la source EDP Sciences

We conduct sensitivity analysis of an optimal control problem applied to agricultural irrigation. The aim is to minimize the square of the amount of irrigation water while ensuring the health grow of the crop. A crucial parameter of our model is the percentage of water loss due to deep percolation, β, a parameter hard to estimate and subject to perturbations. Thus, our problem is a parametric state constrained optimal control problem with a L2 cost. Our goal is to study how perturbations of β affect the optimal solutions of our problem using sensitivity analysis of our problem using sensitivity analysis.To solve numerically our optimal control problem we use the direct method, transcribing the problem into a non-linear programming problem. We show how sensitivity analysis applied to the non-linear programming problem provides information on the variation of optimal solutions of the original problem in terms of β. Valid approximations of optimal solution and cost, provided by sensitivity analysis, are computed for values of β within of a certain neighbourhood. Remarkably, we show that for all β in such neighbourhood, the irrigation period is kept constant. Only the flow rate of irrigation water changes.
DOI : 10.1051/mmnp/2024020

Ana P. Lemos-Paião 1 ; Sofia O. Lopes 2 ; M. D. R. de Pinho 3

1 Center for Research and Development in Mathematics and Applications (CIDMA), University of Aveiro, 3810-193 Aveiro, Portugal
2 Physics Center of Minho and Porto Universities (CF-UM-UP), 4710-057 Braga, Portugal
3 Faculty of Engineering, DEEC, SYSTEC, ISR, University of Porto, 4200-465 Porto, Portugal
@article{MMNP_2025_20_a1,
     author = {Ana P. Lemos-Pai\~ao and Sofia O. Lopes and M. D. R. de Pinho},
     title = {A parametric optimal control problem applied to daily irrigation},
     journal = {Mathematical modelling of natural phenomena},
     eid = {2},
     publisher = {mathdoc},
     volume = {20},
     year = {2025},
     doi = {10.1051/mmnp/2024020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024020/}
}
TY  - JOUR
AU  - Ana P. Lemos-Paião
AU  - Sofia O. Lopes
AU  - M. D. R. de Pinho
TI  - A parametric optimal control problem applied to daily irrigation
JO  - Mathematical modelling of natural phenomena
PY  - 2025
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024020/
DO  - 10.1051/mmnp/2024020
LA  - en
ID  - MMNP_2025_20_a1
ER  - 
%0 Journal Article
%A Ana P. Lemos-Paião
%A Sofia O. Lopes
%A M. D. R. de Pinho
%T A parametric optimal control problem applied to daily irrigation
%J Mathematical modelling of natural phenomena
%D 2025
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024020/
%R 10.1051/mmnp/2024020
%G en
%F MMNP_2025_20_a1
Ana P. Lemos-Paião; Sofia O. Lopes; M. D. R. de Pinho. A parametric optimal control problem applied to daily irrigation. Mathematical modelling of natural phenomena, Tome 20 (2025), article  no. 2. doi : 10.1051/mmnp/2024020. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2024020/

[1] C.D. Pérez-Blanco, A. Hrast-Essenfelder, C. Perry Irrigation technology and water conservation: a review of the theory and evidence Rev. Environ. Econ. Policy 2020 216 239

[2] P.D. Brown, T.A. Cochrane, T.D. Krom Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing Agric. Water Manag. 2010 892 900

[3] N. Kalboussi, S. Roux, K. Boumaza, C. Sinfort, A. Rapaport About modeling and control strategies for scheduling crop irrigation IFAC-PapersOnLine 2019 43 48

[4] S.O. Lopes, R.M.S. Pereira, P.A. Pereira Optimal control applied to an irrigation planning problem: a real case study in Portugal Int. J. Hydrol. Sci. Technol. 2019 173 188

[5] N. Zeng, L. Cen, Y. Xie, S. Zhang Nonlinear optimal control of cascaded irrigation canals with conservation law PDEs Control Eng. Pract. 2020 104407

[6] H. Zhang, T. Oweis Water–yield relations and optimal irrigation scheduling of wheat in the Mediterranean region Agric. Water Manag. 1999 195 211

[7] A.P. Lemos-Paião, S.O. Lopes, M.D.R. De Pinho Analytical study for different extremal state solutions of an irrigation optimal control problem with field capacity modes Int. J. Appl. Comput. Math. 8 2022 27

[8] S.O. Lopes, F.A.C.C. Fontes, A.C.D. Caldeira and R.M.S. Pereira, Optimal control of irrigation with field capacity modes: characterizing the minimal water consumption solution, in 2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO) (2018) 300–305.

[9] S.O. Lopes, F.A.C.C. Fontes, R.M.S. Pereira, M. De Pinho, A.M. Gonçalves Optimal control applied to an irrigation planning problem Math. Probl. Eng. 2016 2016

[10] C. Büskens and H. Maurer, *Sensitivity analysis and real-time control of parametric optimal control problems using nonlinear programming methods, in Online Optimization of Large Scale Systems. Springer, Berlin (2001) 57–68.

[11] A.B. Berkelaar, K. Roos and T. Terlaky, The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming. Springer US, Boston, MA (1997) 159–202.

[12] M. Grötschel, S.O. Krumke and J. Rambau, editors, Online Optimization of Large Scale Systems. Springer-Verlag, Berlin (2001).

[13] A.G. Hadigheh, O. Romanko, T. Terlaky Sensitivity analysis in convex quadratic optimization: Simultaneous perturbation of the objective and right-hand-side vectors Algorith. Oper. Res. 2007 94 111

[14] A.G. Hadigheh, T. Terlaky Sensitivity analysis in convex quadratic optimization: invariant support set interval Optimization 2005 59 79

[15] W. Wei, K. Teo, Z. Zhan A numerical method for an optimal control problem with minimum sensitivity on coefficient variation Appl. Math. Computat. 2011 1180 1190

[16] C. Büskens, Optimierungmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen. Westfälischen Wilhelms-Universitat Münster (1998).

[17] C. Büskens and M. Gerdts, Emergency Landing of a Hypersonic Flight System: A Corrector Iteration Method for Admissible Real-time Optimal Control Approximations. Munich, Germany (2003).

[18] C. Büskens, H. Maurer SQP-methods for Solving Optimal Control Problems with Control and State Constraints: Adjoint Variables Sensitivity Analysis and reAl-time Control 2000 85 108

[19] M. Gerdts, Optimal Control of ODEs and DAEs. De Gruyter Textbook. Walter de Gruyter Co., Berlin (2012).

[20] A. Reiter, H. Gattringer and A. Müller, Real-time computation of inexact minimum-energy trajectories using parametric sensitivities, in Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, Vol. 49, edited by C. Ferraresi and G. Quaglia. Springer, Cham (2018).

[21] A. Reiter, A. Müller and H. Gattringer, Rapid nearly-optimal rendezvous trajectory planning using parameter Sensitivities, in ROMANSY 22 – Robot Design, Dynamics and Control. CISM International Centre for Mechanical Sciences (Courses and Lectures), Vol. 584, edited by V. Arakelian and P. Wenger. Springer, Cham (2019).

[22] C. Specht, M. Gerdts and R. Lampariello, Neighborhood estimation in sensitivity-based update rules for real-time optimal control, in 2020 European Control Conference (ECC) (2020) 1999–2006.

[23] C. Büskens and H. Maurer, *Sensitivity analysis and real-time optimization of parametric nonlinear programming problems, in Online Optimization of Large Scale Systems. Springer, Berlin (2001) 3–16.

[24] A.V. Fiacco Sensitivity analysis for nonlinear programming using penalty methods Math. Programm. 1976 287 311

[25] A.V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming, Vol. 165 of Mathematics in Science and Engineering. Academic Press, Inc., Orlando, FL (1983).

[26] S.M. Robinson Perturbed Kuhn–Tucker points and rates of convergence for a class of nonlinear-programming algorithms Math. Program. 1974 1 16

[27] A. Kiparissides, S.S. Kucherenko, A. Mantalaris, E.N. Pistikopoulos Global sensitivity analysis challenges in biological systems modeling Ind. Eng. Chem. Res. 2009 7168 7180

[28] A. Kiparissides, M. Rodriguez-Fernandez, S. Kucherenko, A. Mantalaris and E. Pistikopoulos, Application of global sensitivity analysis to biological models, in 18th European Symposium on Computer Aided Process Engineering, Vol. 25 of Computer Aided Chemical Engineering, edited by B. Braunschweig and X. Joulia. Elsevier (2008) 689–694.

[29] C. Kontoravdi, S.P. Asprey, E.N. Pistikopoulos, A. Mantalaris Application of global sensitivity analysis to determine goals for design of experiments: an example study on antibody-producing cell cultures Biotechnol. Prog. 2005 1128 1135

[30] P. Tøndel, T.A. Johansen, A. Bemporad An algorithm for multi-parametric quadratic programming and explicit MPC solutions Automatica 2003 489 497

[31] C. Büskens, H.J. Pesch and S. Winderl, Real-time solutions of bang-bang and singular optimal control Problems, in Online Optimization of Large Scale Systems. Springer, Berlin (2001) 129–142.

[32] H. Maurer and G. Vossen, Sufficient conditions and sensitivity analysis for optimal bang-bang control problems with state constraints, in Proceedings of the 23rd IFIP Conference on System Modeling and Optimization (2007).

[33] R.F. Hartl, S.P. Sethi, R.G. Vickson A survey of the maximum principles for optimal control problems with state constraints SIAM Rev. 1995 181 218

[34] L.W. Neustadt, Optimization. Princeton University Press, Princeton, N.J. (1976).

[35] A. Barclay, P.E. Gill and J.B. Rosen, SQP methods and their application to numerical optimal control, in Variational Calculus, Optimal Control and Applications (Trassenheide, 1996), Vol. 124 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1998) 207–222.

[36] J.T. Betts Survey of numerical methods for trajectory optimization J. Guid. Control Dyn. 1998 193 207

[37] R. Fletcher, Practical Methods of Optimization. Vol. 2. John Wiley Sons, Ltd., Chichester (1981).

[38] R.G. Allen, L.S. Pereira, D. Raes and M. Smith, Crop evapotranspiration – guidelines for computing crop water requirements. Technical report, Food and Agriculture Organization: Irrigation and drainage paper 56 (1998).

[39] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming. Scientific Press series. Thomson, Brooks, Cole (2003).

[40] D.M. Gay, The AMPL modeling language: an aid to formulating and solving optimization problems, in Numerical Analysis and Optimization, Vol. 134 of Springer Proc. Math. Stat. Springer, Cham (2015) 95–116.

[41] A. Wächter, L.T. Biegler On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming Math. Program. 2006 25 57

Cité par Sources :