A Mathematical Model of Marine Mucilage, the Case of the Liga on the Basque Coast
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 34.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we are interested in modeling the production of mucus by diatoms under the constraint of a nutrient limitation and carbon overabundance. The initial questioning comes from the observation of the so-called “liga” on the Aquitaine coast. The biological origin of the phenomenon is presented and discussed based on the existing literature. An original mathematical model incorporating mucus secretion is proposed and its theoretical properties are analized: well-posedness and differentiability with respect to the model parameters. Finally, numerical experiments are provided, investigating the possibility of parameter identification for the model using chemostat-type experiments.
DOI : 10.1051/mmnp/2023040

Charles Pierre 1 ; Guy Vallet 1

1 LMAP UMR- CNRS 5142, IPRA BP 1155, 64013 Pau Cedex, France
@article{MMNP_2023_18_a26,
     author = {Charles Pierre and Guy Vallet},
     title = {A {Mathematical} {Model} of {Marine} {Mucilage,} the {Case} of the {Liga} on the {Basque} {Coast}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {34},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023040/}
}
TY  - JOUR
AU  - Charles Pierre
AU  - Guy Vallet
TI  - A Mathematical Model of Marine Mucilage, the Case of the Liga on the Basque Coast
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023040/
DO  - 10.1051/mmnp/2023040
LA  - en
ID  - MMNP_2023_18_a26
ER  - 
%0 Journal Article
%A Charles Pierre
%A Guy Vallet
%T A Mathematical Model of Marine Mucilage, the Case of the Liga on the Basque Coast
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023040/
%R 10.1051/mmnp/2023040
%G en
%F MMNP_2023_18_a26
Charles Pierre; Guy Vallet. A Mathematical Model of Marine Mucilage, the Case of the Liga on the Basque Coast. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 34. doi : 10.1051/mmnp/2023040. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023040/

[1] T. Alcoverro, E. Conte, L. Mazzella Production of mucilage by the Adriatic epipelic diatom cylindrotheca closterium (bacillariophyceae) under nutrient limitation J. Phycol. 2000 1087 1095

[2] S. Calvo, R. Barone, L. Flores Observations on mucus aggregates along Sicilian coasts during 1991–1992 Sci. Total Environ. 1995 23 31

[3] D. Degobbis, R. Precali, C.R. Ferrari, T. Djakovac Attilio Rinaldi, I. Ivancic, M. Gismondi, N. Smodlaka Changes in nutrient concentrations and ratios during mucilage events in the period 1999–2002 Sci. Total Environ. 2005 103 114

[4] P. Del Negro, E. Crevatin, C. Larato, C. Ferrari, C. Totti, M. Pompei, M. Giani, D. Berto, S. Fonda Umani Mucilage microcosms Sci. Total Environ. 2005 258 269

[5] M. Mecozzi, E. Pietrantonio, V. Di Noto, Z. Papai The humin structure of mucilage aggregates in the Adriatic and Tyrrhenian seas: hypothesis about the reasonable causes of mucilage formation Mar. Chem. 2005 255 269

[6] Y. Aktan, A. Dede and P.S. Ciftci, Mucilage event associated with diatoms and dinoflagellates in Sea of Marmara, Turkey. Harmful Algae News IOC-UNESCO, (2008) 1–3.

[7] N. Balkis-Ozdelice, T. Durmuand, M. Balci A preliminary study on the intense pelagic and benthic mucilage phenomenon observed in the sea of Marmara Int. J. Environ. Geoinformatics 2021 414 422

[8] I. Auby and N. Neaud-Masson, Identification des composants d’une substance dénommée localement ”liga” se déposant sur certains engins de pêche au large de Saint Jean de Luz. Report of Institut francais de recherche pour l’exploitation de la mer (ifremer), 2001. https://archimer.ifremer.fr/doc/00076/18681/

[9] N. Susperregui, ”Liga”, mucilages marins sur la côte basque Dossier de presse Comité Interdépartemental des Pêches Maritimes et des Elevages Marins des Pyrénées Atlantiques – Landes (2019).

[10] X. Mari, U. Passow, C. Migon, A. B. Burd, L. Legendre Transparent exopolymer particles : Effects on carbon cycling in the ocean Progr. Oceanogr. 2017 13 37

[11] A. Bussard, Capacités d’acclimatation des diatomées aux contraintes environnementales. PhD thesis, Muséum national d’histoire naturelle – Sciences de la Nature et de l’Homme (2015).

[12] C.S. Reynolds Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment Hydrobiologia 2007 37 45

[13] S. Scala, C. Bowler Molecular insights into the novel aspects of diatom biology Cell. Mol. Life Sci. 2001 1666 1673

[14] J. Seckbach and J.P. Kociolek, The Diatom World. Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 19 (2011).

[15] V. Smetacek Diatoms and the ocean carbon cycle Protist 1999 25 32

[16] O. Sayanova, V. Mimouni, L. Ulmann, A. Morant-Manceau, V. Pasquet, B. Schoefs, J.A. Napier Modulation of lipid biosynthesis by stress in diatoms Phil. Trans. R. Soc. B 2017 20160407

[17] J.L. Genzer, M. Kamalanathan, L. Bretherton, J. Hillhouse, C. Xu, P.H. Santschi, A. Quigg Diatom aggregation when exposed to crude oil and chemical dispersant: potential impacts of ocean acidification PLoS ONE 2020 e0235473

[18] U. Passow Formation of transparent exopolymer particles, TEP, from dissolved precursor material Mar Ecol. Prog. Ser. 2000 1 11

[19] A.B. Burd, J.P. Chanton, K.L. Daly, S. Gilbert, U. Passow, A. Quigg The science behind marine-oil snow and MOSSFA: Past, present, and future Progr. Oceanogr. 2020 102398

[20] A. Bartual, I.V. Cera, S. Flecha, L. Prieto Effect of dissolved polyunsaturated aldehydes on the size distribution of transparent exopolymeric particles in an experimental diatom bloom Mar. Biol. 2017 120

[21] N. Susperregui, personal communication.

[22] A.E. Allen, C.L. Dupont, M. Oborník, A. Horák, A. Nunes-Nesi, J.P. Mccrow, H. Zheng, D.A. Johnson, H. Hu, A.R. Fernie, C. Bowler Evolution and metabolic significance of the urea cycle in photosynthetic diatoms Nature 2011 203 207

[23] O. Levitan, J. Dinamarca, E. Zelzion, D.S. Lun, L.T. Guerra, M. Kyung Kim, J. Kim, B.A.S. Van Mooy, D. Bhattacharya, P.G. Falkowski Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress PNAS 2015 412 417

[24] S.R. Smith, C.L. Dupont, J.K. Mccarthy, J.T. Broddrick, M. Oborník, A. Horák, Z. Füssy, J. Cihlář, S. Kleessen, H. Zheng, J.P. Mccrow, K.K. Hixson, W.L. Araújo, A. Nunes-Nesi, A. Fernie, Z. Nikoloski, B.O. Palsson, A.E. Allen Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom Nat. Commun. 2019 4552

[25] M. Schapira, Dynamique spatio-temporelle de Phaeocystis globosa en Manche orientale: effets de la turbulence et des apports sporadiques en sels nutritifs. PhD thesis, UMR 8013 ELICO: Ecosystèmes Littoraux et Côtiers, Université de Lille 1 (2005).

[26] E. Litchman, C. Klausmeier, O. Schofield, P. Falkowski The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level Ecol Lett. 2007 1170 1181

[27] M. Droop Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri J. Mar. Biol. Assoc. UK 1968 689 733

[28] D.H. Turpin, Physiological mechanisms in phytoplankton resource competition, in Growth and Reproductive Strategies of Freshwater Phytoplankton, edited by C.D. Sandgren. Cambridge University Press (1988) 318–368.

[29] M.A. Brzezinski The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables J. Phycol. 1985 347 357

[30] C.A. Klausmeier, E. Litchman, T. Daufresne, S.A. Levin Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton Nature 2004 171 174

[31] A.C. Martiny, J.A. Vrugt, M.W. Lomas Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean Scientific Data 2014 140048

[32] S.A. Sañudo-Wilhelmy, A. Tovar-Sanchez, F.X. Fu, D.G. Capone, E.J. Carpenter, D.A. Hutchins The impact of surface- adsorbed phosphorus on phytoplankton Redfield stoichiometry Nature 2004 897 901

[33] J. Elser, R. Sterner, E. Gorokhova, W. Fagan, T. Markow, J. Cotner, J. Harrison, S. Hobbie, G. Odell, L. Weider Biological stoichiometry from genes to ecosystems Ecol. Lett. 2000 540 550

[34] E. Buzzelli, R. Gianna, E. Marchiori, M. Bruno Influence of nutrient factors on production of mucilage by Amphora coffeaeformis var. perpusilla Continental Shelf Res. 1997 1171 1180

[35] L. Mackenzie, I. Sims, V. Beuzenberg, P. Gillespie Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasman Bay, New Zealand Harmful Algae 2002 69 83

[36] D.C.O. Thornton Coomassie stainable particles (CSP): protein containing exopolymer particles in the ocean Front. Mar. Sci. 2018 206

[37] P. Cermeño The geological story of marine diatoms and the last generation of fossil fuels Perspect. Phycol. 2016 53 60

[38] P. Zahajská, S. Opfergelt, S.C. Fritz, J. Stadmark, D.J. Conley What is diatomite? Q. Res. 2020 48 52

[39] D.M. Harwood, V.A. Nikolaev, D.M. Winter Cretaceous records of diatom evolution, radiation, and expansion Paleontol. Soc. Pap. 2007 33 59

[40] V. Girard, S. Saint Martin, J.-P. Saint Martin, A.R. Schmidt, S. Struwe, V. Perrichot, G. Breton, D. Néraudeau Exceptional preservation of marine diatoms in upper Albian amber Geology 2009 83 86

[41] J.M. Nakov, T.M. Beaulieu, A.J. Alverson Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (diatoms, bacillariophyta) New Phytologist 2018 462 473

[42] A. Barral, B. Gomez, F. Fourel, V. Daviero-Gomez, C. Lécuyer CO2 and temperature decoupling at the million-year scale during the cretaceous greenhouse Sci. Rep. 2017 8310

[43] J. Renaudie Quantifying the cenozoic marine diatom deposition history: links to the C and Si cycles Biogeosciences 2016 6003 6014

[44] D.J. Beerling, D.L. Royer Convergent cenozoic co2 history Nat. Geosci. 2011 418 420

[45] U. Riebesell, K.G. Schulz, R.G.J. Bellerby, M. Botros, P. Fritsche, M. Meyerhöfer, C. Neill, G. Nondal, A. Oschlies, J. Wohlers, E. Zöllner Enhanced biological carbon consumption in a high co2 ocean Nature 2007 545 548

[46] J. Barcelos E Ramos, K.G. Schulz, C. Brownlee, S. Sett, E. B. Azevedo Effects of increasing seawater carbon dioxide concentrations on chain formation of the diatom Asterionellopsis glacialis PLoS ONE 2014 e90749

[47] T. Brembu, A. Muhlroth, L. Alipanah, A.M. Bones The effects of phosphorus limitation on carbon metabolism in diatoms Phil. Trans. R. Soc. B 2017 20160406

[48] R. Danovaro, S. Fonda Umani, A. Pusceddu Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean sea PLoS ONE 2009 e7006

[49] C. Heemann, Phytoplanktonexsudation in Abhängigkeit von der Meerwasserkarbonatchemie. Thesis, Univ. Bremen (2002).

[50] M. Hein, K. Sand-Jensen CO2 increases oceanic primary production Nature 1997 526 527

[51] D.O. Hessen, T.R. Anderson Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications Limnol. Oceanogr. 2008 1685 1696

[52] A. Torstensson, M. Hedblom, M. Mattsdotter Björk, M. Chierici, A. Wulff Long-term acclimation to elevated pCO2 alters carbon metabolism and reduces growth in the antarctic diatom Nitzschia lecointei Proc. Roy. Soc. B: Biol. Sci. 2015 20151513

[53] Z. Wei, T. Xuexi, Y. Yingying, Z. Xin Zhang, Z. Xinxin Elevated pCO2 level affects the extracellular polymer metabolism of Phaeodactylum tricornutum Front. Microbiol. 2020 339

[54] M. Cadier, Diversité des communautés phytoplanctoniques en relation avec les facteurs environnementaux en mer d’Iroise: approche par la modélisation 3D. PhD thesis, LEMAR – Laboratoire des Sciences de l’Environnement Marin (2016) tel.archives-ouvertes.fr/tel-01383247.

[55] S. Dutkiewicz, M.J. Follows, J.G. Bragg Modeling the coupling of ocean ecology and biogeochemistry Global Biogeochem. Cycles 2009 GB4017

[56] M.J. Follows, S. Dutkiewicz, S. Grant, S.W. Chisholm Emergent biogeography of microbial communities in a model ocean Science 2007 1843 1846

[57] K.J. Flynn, A. Mitra Why plankton modelers should reconsider using rectangular hyperbolic (Michaelis–Menten, monod) descriptions of predator–prey interactions Front. Mar. Sci. 2016 165

[58] F. Murat, C. Trombetti A chain rule formula for the composition of a vector-valued function by a piecewise smooth function Bol. Unione Mat. Ital. 2003 581 595

[59] T. Legovic, A. Cruzado A model of phytoplankton growth on multiple nutrients based on the Michaelis–Menten–Monod uptake, Droop’s growth and Liebig’s law Ecol. Model. 1997 19 31

[60] K.J. Flynn Modelling multi-nutrient interactions in phytoplankton Progr. Oceanogr. 2003 249 279

[61] J.R. Lobry, Re-Evalution du modèle de croissance de Monod. Effet des antibiotiques sur l’énergie de maintenance. Thède de l’Université Claude Bernard, Lyon I (1991).

[62] D. Sardari, Mathematical basis for diatom growth modelling, in The Mathematical Biology of Diatoms, edited by J.L. Pappas, Diatoms: Biology and Applications. Wiley (2023) Chap. 5.

[63] J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganim Cultures. Chemostat and Bioprocesses SET, Vol. 1. Wiley (2017).

[64] S.E. Jørgensen and G. Bendoricchio, Fundamentals of Ecological Modelling. Developments in Environmental Modelling, Vol. 21. Elsevier (2001).

[65] F.-B. Wang, S.-B. Hsu A Survey of Mathematical Models with Variable Quotas Taiwanese J. Math. 2019 269 291

[66] H. Wang, P.V. Garcia, S. Ahmed, C.M. Heggerud Mathematical comparison and empirical review of the Monod and Droop forms for resource-based population dynamics Ecol. Model. 2022 109887

[67] C.A. Klausmeier, E. Litchman, S.A. Levin Phytoplankton growth and stoichiometry under multiple nutrient limitation Limnol. Oceanogr. 2004 463 1470

[68] A. Peace, H. Wang, Y. Kuang Dynamics of a Producer-–Grazer Model Incorporating the Effects of Excess Food Nutrient Content on Grazer’s Growth Bull. Math. Biol. 2014 2175 2197

[69] M.E. Baird, S.M. Emsley Towards a mechanistic model of plankton population dynamics J. Plankton Res. 1999 85 126

[70] A. Dauta Conditions de développement du phytoplancton. Étude comparative du comportement de huit espèces en culture. II. Rôle des nutriments: assimilation et stockage intracellulaire Annls Limnol. 1982 263 292

[71] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. revised ed. Chapman and Hall/CRC (2015).

[72]

[73] J. Cortes Discontinuous dynamical systems IEEE Control Syst. Mag. 2008 36 73

[74] J.L. Serra, M.J. Llama, E. Cadenas Nitrate utilization by the diatom Skeletonema costatum. II. Regulation of nitrate uptake Plant Physiol. 1978 991 994

[75] S.E. Jørgensen, M. Friis and J. Henriksen, Handbook of Environmental Data and Ecological Parameters (1979).

[76] S. Burkhardt, G. Amoroso, U. Riebesell, D. Sültemeyer CO2 and HCO3− uptake in marine diatoms acclimated to different CO2 concentrations Limnol. Oceanogr. 2001 1378 1391

[77] A.M. Johnston, J.A. Raven Inorganic carbon accumulation by the marine diatom phaeodactylum tricornutum Eur. J. Phycol. 1996 285 290

[78] J. Chen, D. Thornton The effect of temperature and growth rate on TEP production by Thalassiosira weissflogii J. Phycol. 2011 S64 S64

[79] T. Fukao, K. Kimoto, Y. Kotani Effect of temperature on cell growth and production of transparent exopolymer particles by the diatom Coscinodiscus granii isolated from marine mucilage J. Appl. Phycol. 2012 181 186

[80] N. García, J.A. López-Elías, A. Miranda, M. Martínez-Porchas, N. Huerta, A. García Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases Latin Am. J. Aquatic Res. 2012 435 440

Cité par Sources :