Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2023_18_a13, author = {Hajime Koba}, title = {Thermodynamical {Modeling} of {Multiphase} {Flow} {System} with {Surface} {Tension} and {Flow}}, journal = {Mathematical modelling of natural phenomena}, eid = {32}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023036}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023036/} }
TY - JOUR AU - Hajime Koba TI - Thermodynamical Modeling of Multiphase Flow System with Surface Tension and Flow JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023036/ DO - 10.1051/mmnp/2023036 LA - en ID - MMNP_2023_18_a13 ER -
%0 Journal Article %A Hajime Koba %T Thermodynamical Modeling of Multiphase Flow System with Surface Tension and Flow %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023036/ %R 10.1051/mmnp/2023036 %G en %F MMNP_2023_18_a13
Hajime Koba. Thermodynamical Modeling of Multiphase Flow System with Surface Tension and Flow. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 32. doi : 10.1051/mmnp/2023036. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023036/
[1] F.P. Angel, The Hamilton-type Principle in Fluid Dynamics. Fundamentals and Applications to Magnetohydrodynamics, Thermodynamics, and Astrophysics. SpringerWienNewYork, Vienna (2006) xxvi+404.
[2] Lagrangian Navier–Stokes diffusions on manifolds: variational principle and stability Bull. Sci. Math. 2012 857 881
,[3] Kinematics of submanifolds and the mean curvature normal Arch. Rational Mech. Anal. 1986 1 27
[4] On the two-phase Navier–Stokes equations with Boussinesq–Scriven surface fluid J. Math. Fluid Mech. 2010 133 150
,[5] Sur l’existence d’une viscosité seperficielle, dans la mince couche de transition séparant un liquide d’un autre fluide contigu Ann. Chim. Phys. 1913 349 357
[6] Finite elements on evolving surfaces IMA J. Numer. Anal. 2007 262 292
,[7] E. Feireisl, Mathematical Thermodynamics of Viscous Fluids. Mathematical Thermodynamics of Complex Fluids. Lecture Notes in Math., Vol. 2200. Fond. CIME/CIME Found. Subser., Springer, Cham (2017) 47–100.
[8] Anisotropy in multi-phase systems: a phase field approach Interfaces Free Bound. 1999 175 198
, ,[9] A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions SIAM J. Appl. Math. 2000 295 315
, ,[10] R. Gatignol and R. Prud’homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces. World Scientific, Singapore (2001) xviii+248.
[11] J.W. Gibbs, The Scientific Papers of J. Willard Gibbs. Vol. I: Thermodynamics. Dover Publications, Inc., New York (1961/1906) xxvi+434.
[12] A transport theorem for moving interfaces Quart. Appl. Math. 1989 773 777
, ,[13] M.E. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010) xxii+694.
[14] I. Gyarmati, Non-equilibrium Thermodynamics. Springer (1970).
[15] Energetic variational approach in complex fluids: maximum dissipation principle Discrete Contin. Dyn. Syst. 2010 1291 1304
, ,[16] On derivation of compressible fluid systems on an evolving surface Quart. Appl. Math. 2018 303 359
[17] On generalized compressible fluid systems on an evolving surface with a boundary Quart. Appl. Math. 2023 721 749
[18] On generalized diffusion and heat systems on an evolving surface with a boundary Quart. Appl. Math. 2020 617 640
[19] H. Koba, Energetic variational approaches for inviscid multiphase flow systems with surface flow and tension, preprint. arXiv:2211.06672.
[20] Energetic variational approaches for incompressible fluid systems on an evolving surface Quart. Appl. Math. 2017 359 389
, ,[21] Energetic variational approaches for non-Newtonian fluid systems Z. Angew. Math. Phys. 2018 143
,[22] Geometry of an incompressible fluid on a Riemannian manifold Geometric Mech. (Japanese) (Kyoto, 2002). Sūrikaisekikenkyūsho Kokyuroku. 2002 33 47
,[23] J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations. Monographs in Mathematics, Vol. 105. Birkhäuser/Springer, Cham (2016). xix+609.
[24] Dynamics of a fluid interface equation of motion for Newtonian surface fluids Chem. Eng. Sci. 1960 98 108
[25] J. Serrin, Mathematical Principles of Classical Fluid Mechanics. 1959 Handbuch der Physik (herausgegeben von S. Flugge), Bd. 8/1, Stromungsmechanik I (Mitherausgeber C. Truesdell). Springer-Verlag, Berlin-Gottingen-Heidelberg (2013) 125–263.
[26] Momentum and moment-of-momentum balances for moving surfaces Chem. Eng. Sci. 1964 379 385
[27] J.C. Slattery, L. Sagis and E.-S. Oh, Interfacial Transport Phenomena. 2nd edn. Springer, New York (2007) xviii+827.
[28] L. Simon, Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983) vii+272.
[29] Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations Commun. Partial Differ. Equ. 1992 1407 1456
[30] Thermodynamically-consistent flash calculation in energy industry: From iterative schemes to a unified thermodynamics-informed neural network Int. J. Energy Res. 2022 14581 16101
, ,Cité par Sources :