Thermodynamical Modeling of Multiphase Flow System with Surface Tension and Flow
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 32.

Voir la notice de l'article provenant de la source EDP Sciences

We consider the governing equations for the motion of the viscous fluids in two moving domains and an evolving surface from both energetic and thermodynamic points of view. We make mathematical models for multiphase flow with surface flow by our energetic variational and thermodynamic approaches. More precisely, we apply our energy densities, the first law of thermodynamics, and the law of conservation of total energy to derive our multiphase flow system with surface tension and flow. We study the conservative forms and conservation laws of our system by using the surface transport theorem and integration by parts. Moreover, we investigate the enthalpy, the entropy, the Helmholtz free energy, and the Gibbs free energy of our model by applying the thermodynamic identity. The key idea of deriving surface tension and viscosities is to make use of both the first law of thermodynamics and our energy densities.
DOI : 10.1051/mmnp/2023036

Hajime Koba 1

1 Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan
@article{MMNP_2023_18_a13,
     author = {Hajime Koba},
     title = {Thermodynamical {Modeling} of {Multiphase} {Flow} {System} with {Surface} {Tension} and {Flow}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {32},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023036/}
}
TY  - JOUR
AU  - Hajime Koba
TI  - Thermodynamical Modeling of Multiphase Flow System with Surface Tension and Flow
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023036/
DO  - 10.1051/mmnp/2023036
LA  - en
ID  - MMNP_2023_18_a13
ER  - 
%0 Journal Article
%A Hajime Koba
%T Thermodynamical Modeling of Multiphase Flow System with Surface Tension and Flow
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023036/
%R 10.1051/mmnp/2023036
%G en
%F MMNP_2023_18_a13
Hajime Koba. Thermodynamical Modeling of Multiphase Flow System with Surface Tension and Flow. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 32. doi : 10.1051/mmnp/2023036. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023036/

[1] F.P. Angel, The Hamilton-type Principle in Fluid Dynamics. Fundamentals and Applications to Magnetohydrodynamics, Thermodynamics, and Astrophysics. SpringerWienNewYork, Vienna (2006) xxvi+404.

[2] M. Arnaudon, A.B. Cruzeiro Lagrangian Navier–Stokes diffusions on manifolds: variational principle and stability Bull. Sci. Math. 2012 857 881

[3] D.E. Betounes Kinematics of submanifolds and the mean curvature normal Arch. Rational Mech. Anal. 1986 1 27

[4] D. Bothe, J. Prüss On the two-phase Navier–Stokes equations with Boussinesq–Scriven surface fluid J. Math. Fluid Mech. 2010 133 150

[5] M.J. Boussinesq Sur l’existence d’une viscosité seperficielle, dans la mince couche de transition séparant un liquide d’un autre fluide contigu Ann. Chim. Phys. 1913 349 357

[6] G. Dziuk, C.M. Elliott Finite elements on evolving surfaces IMA J. Numer. Anal. 2007 262 292

[7] E. Feireisl, Mathematical Thermodynamics of Viscous Fluids. Mathematical Thermodynamics of Complex Fluids. Lecture Notes in Math., Vol. 2200. Fond. CIME/CIME Found. Subser., Springer, Cham (2017) 47–100.

[8] H. Garcke, B. Stoth, B. Nestler Anisotropy in multi-phase systems: a phase field approach Interfaces Free Bound. 1999 175 198

[9] H. Garcke, B. Nestler, B. Stoth A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions SIAM J. Appl. Math. 2000 295 315

[10] R. Gatignol and R. Prud’homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces. World Scientific, Singapore (2001) xviii+248.

[11] J.W. Gibbs, The Scientific Papers of J. Willard Gibbs. Vol. I: Thermodynamics. Dover Publications, Inc., New York (1961/1906) xxvi+434.

[12] M.E. Gurtin, A. Struthers, W.O. Williams A transport theorem for moving interfaces Quart. Appl. Math. 1989 773 777

[13] M.E. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010) xxii+694.

[14] I. Gyarmati, Non-equilibrium Thermodynamics. Springer (1970).

[15] Y. Hyon, D.Y. Kwak, C. Liu Energetic variational approach in complex fluids: maximum dissipation principle Discrete Contin. Dyn. Syst. 2010 1291 1304

[16] H. Koba On derivation of compressible fluid systems on an evolving surface Quart. Appl. Math. 2018 303 359

[17] H. Koba On generalized compressible fluid systems on an evolving surface with a boundary Quart. Appl. Math. 2023 721 749

[18] H. Koba On generalized diffusion and heat systems on an evolving surface with a boundary Quart. Appl. Math. 2020 617 640

[19] H. Koba, Energetic variational approaches for inviscid multiphase flow systems with surface flow and tension, preprint. arXiv:2211.06672.

[20] H. Koba, C. Liu, Y. Giga Energetic variational approaches for incompressible fluid systems on an evolving surface Quart. Appl. Math. 2017 359 389

[21] H. Koba, K. Sato Energetic variational approaches for non-Newtonian fluid systems Z. Angew. Math. Phys. 2018 143

[22] Y. Mitsumatsu, Y. Yano Geometry of an incompressible fluid on a Riemannian manifold Geometric Mech. (Japanese) (Kyoto, 2002). Sūrikaisekikenkyūsho Kokyuroku. 2002 33 47

[23] J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations. Monographs in Mathematics, Vol. 105. Birkhäuser/Springer, Cham (2016). xix+609.

[24] L.E. Scriven Dynamics of a fluid interface equation of motion for Newtonian surface fluids Chem. Eng. Sci. 1960 98 108

[25] J. Serrin, Mathematical Principles of Classical Fluid Mechanics. 1959 Handbuch der Physik (herausgegeben von S. Flugge), Bd. 8/1, Stromungsmechanik I (Mitherausgeber C. Truesdell). Springer-Verlag, Berlin-Gottingen-Heidelberg (2013) 125–263.

[26] J.C. Slattery Momentum and moment-of-momentum balances for moving surfaces Chem. Eng. Sci. 1964 379 385

[27] J.C. Slattery, L. Sagis and E.-S. Oh, Interfacial Transport Phenomena. 2nd edn. Springer, New York (2007) xviii+827.

[28] L. Simon, Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983) vii+272.

[29] M.E. Taylor Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations Commun. Partial Differ. Equ. 1992 1407 1456

[30] T. Zhang, S. Sun, H. Bai Thermodynamically-consistent flash calculation in energy industry: From iterative schemes to a unified thermodynamics-informed neural network Int. J. Energy Res. 2022 14581 16101

Cité par Sources :