@article{10_1051_mmnp_2023035,
author = {Yifan Liu},
title = {On the dynamics of rotating rigid tube and its interaction with air},
journal = {Mathematical modelling of natural phenomena},
eid = {31},
year = {2023},
volume = {18},
doi = {10.1051/mmnp/2023035},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023035/}
}
Yifan Liu. On the dynamics of rotating rigid tube and its interaction with air. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 31. doi: 10.1051/mmnp/2023035
[1] Steady motion of a rigid disk of finite thickness on a horizontal plane Int. J. Non-Linear Mech 2006 605
[2] Viscous dissipation for Euler’s disk Phys. Rev. E 2002 056309
[3] , The rolling of rigid body on a plane and sphere Reg. Chaotic Dyn 2002 177
[4] , , Retrograde motion of a rolling disk Physics-Uspekhi 2017 931
[5] , , Dynamics of rolling disk Reg. Chaotic Dyn 2003 201
[6] Rotating and rolling rigid bodies and the “hairy ball” theorem Am. J. Phys 2017 447
[7] On the influence of friction on the motion of a top Physica 1952 503 514
[8] , , Dynamics of an axisymmetric body spinning on a horizontal surface. III. Geometry of steady state structures for convex bodies Proc. R. Soc. Lond. A 2006 371
[9] , , , , Rolling and slipping motion of Euler’s disk Phys. Rev. E 2004 056610
[10] , , The geometry of the Painlevé paradox SIAM J. Appl. Dyn. Syst 2022 1798
[11] Y.A. Çengel and J.M. Cimbala, Fluid Mechanics: Fundamentals and Applications, 3rd edn. McGraw Hill (2013).
[12] , , Speeding to a stop: the finite-time singularity of a spinning disk Phys. Rev. E 2002 045102
[13] R.A. Granger, Fluid Mechanics, 1st edn. Dover Publications (1995).
[14] , Constants of the motion for nonslipping tippe tops and other tops with round pegs Am. J. Phys 2000 821
[15] , New results on Painlevé paradoxes Eur. J. Mech. A/Solids 1999 653
[16] , On the regularization of impact without collision: the Painlevé paradox and compliance Proc. R. Soc. A 2017 20160773
[17] On tops rising by friction Physica 1952 515 527
[18] , , , Chaotic rotations of an asymmetric body with time-dependent moments of inertia and viscous drag Int. J. Bifurcat. Chaos 2003 393
[19] , , , The mysterious spinning cylinder — rigid-body motion that is full of surprises Am. J. Phys 2019 85
[20] , , Terminal retrograde turn of rolling rings Phys. Rev. E 2015 032913
[21] , The ringing of Euler’s disk Reg. Chaotic Dyn 2002 49
[22] A.M. Kuethe and J.D. Schetzer, Foundations of Aerodynamics, 2nd edn. John Wiley Sons (1959).
[23] , , Dynamics of a rolling disk in the presence of dry friction J. Nonlinear Sci 2005 27
[24] Experimental and theoretical investigation of the energy dissipation of a rolling disk during its final stage of motion Arch. Appl. Mech 2009 1063
[25] , , , Rolling friction and energy dissipation in a spinning disc Proc. R. Soc. A 2014 20140191
[26] , Dynamics of a spinning disk J. Appl. Mech 2016 061003
[27] Euler’s disk and its finite-time singularity Nature 2000 833
[28] , Spinning eggs — a paradox resolved Nature 2002 385
[29] , , Dynamics of an axisymmetric body spinning on a horizontal surface. I. Stability and the gyroscopic approximation Proc. R. Soc. Lond. A 2004 3643
[30] H. Rouse, Elementary Mechanics of Fluid, original edn. Dover Publications (1946).
[31] , , , Motion of a circular cylinder on a smooth surface Can. J. Phys 2009 607
[32] , , Dynamics of an axisymmetric body spinning on a horizontal surface. II. Selfinduced jumping Proc. R. Soc. Lond. A 2005 1753
[33] , , Spinning tubes: an authentic research experience in a three-hour laboratory Am. J. Phys 2010 467
[34] W.Z. Stepniewski and C.N. Keys, Rotary-Wing Aerodynamics, reprint edn. Dover Publications (1984).
[35] Rigid-body dynamics with friction and impact SIAM Rev 2000 3
[36] , Vibrations of Euler’s disk Phys. Rev. E 2005 066609
[37] F.M. White, Fluid Mechanics, 8th edn. McGraw Hill (2015).
[38] , Spinning objects on horizontal planes Am. J. Phys 1983 449
[39] https://www.youtube.com/watch?v=wQTVcaA3PQw.
[40] https://www.youtube.com/watch?v=7rAiZR_zasg.
Cité par Sources :