Voir la notice de l'article provenant de la source EDP Sciences
Pablo Moreno-Spiegelberg 1 ; Damià Gomila 1
@article{MMNP_2024_19_a1, author = {Pablo Moreno-Spiegelberg and Dami\`a Gomila}, title = {A model for seagrass species competition: {Dynamics} of the symmetric case}, journal = {Mathematical modelling of natural phenomena}, eid = {2}, publisher = {mathdoc}, volume = {19}, year = {2024}, doi = {10.1051/mmnp/2023033}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023033/} }
TY - JOUR AU - Pablo Moreno-Spiegelberg AU - Damià Gomila TI - A model for seagrass species competition: Dynamics of the symmetric case JO - Mathematical modelling of natural phenomena PY - 2024 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023033/ DO - 10.1051/mmnp/2023033 LA - en ID - MMNP_2024_19_a1 ER -
%0 Journal Article %A Pablo Moreno-Spiegelberg %A Damià Gomila %T A model for seagrass species competition: Dynamics of the symmetric case %J Mathematical modelling of natural phenomena %D 2024 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023033/ %R 10.1051/mmnp/2023033 %G en %F MMNP_2024_19_a1
Pablo Moreno-Spiegelberg; Damià Gomila. A model for seagrass species competition: Dynamics of the symmetric case. Mathematical modelling of natural phenomena, Tome 19 (2024), article no. 2. doi : 10.1051/mmnp/2023033. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023033/
[1] Traveling pulses in type-I excitable media Phys. Rev. E 2021 L052203
, , ,[2] The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates Bioscience 2001 633 641
, , , , , , , , , , , ,[3] Complete factorization and analytic solutions of generalized lotka-volterra equations Phys. Lett. A 1988 378 382
[4] Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the Great Barrier Reef Limnol. Oceanogr. 2011 2200 2210
, ,[5] The value of the world’s ecosystem services and natural capital Nature 1997 253 260
, , , , , , , , , , , ,[6] F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation. OUP, Oxford (2009).
[7] Steady-state mode interactions in the presence of 0(2)-symmetry Dyn. Stabil. Syst. 1986 159 185
[8] Major role of marine vegetation on the oceanic carbon cycle Biogeosciences 2005 1 8
, ,[9] A preliminary evaluation of wave attenuation by four species of seagrass Estuar. Coast. Shelf Sci. 1992 565 576
,[10] Stable droplets and growth laws close to the modulational instability of a domain wall Phys. Rev. Lett. 2001 194101
, , ,[11] Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats Conserv. Biol. 2007 1301 1315
, , ,[12] A global map of human impact on marine ecosystems Science 2008 948 952
, , , , , , , , , , , , , , , , , ,[13] Lotka–Volterra representation of general nonlinear systems Math. Biosci. 1997 1 32
,[14] Interaction intensity and importance along two stress gradients: adding shape to the stress-gradient hypothesis Oecologia 2010 733 745
,[15] A mathematical model for inter-specific interactions in seagrasses Oikos 2022 e09296
, , ,[16] E. Llabrés, A. Blanco-magad, M. Sales and T. Sintes, Modelling seagrass competition in the Mediterranean Sea in global warming scenarios. (2022).
[17] E. Mayol, J. Boada, M. Pérez, N. Sanmartí, M. Minguito-Frutos, R. Arthur, T. Alcoverro, D. Alonso and J. Romero, Understanding the depth limit of the seagrass Cymodocea nodosa as a critical transition: field and modeling evidence. Mar. Environ. Res. 182 (2022).
[18] Nonlinear dynamics and alternative stable states in shallow coastal systems Oceanography 2013 220 231
, , , , ,[19] Bifurcation structure of traveling pulses in type-I excitable media Phys. Rev. E 2022 034206
, , , ,[20] A global crisis for seagrass ecosystems Bioscience 2006 987 996
, , , , , , , , , , , ,[21] Associations of concern: Declining seagrasses and threatened dependent species Front. Ecol. Environ. 2009 242 246
, , , ,[22] Paradox of enrichment: destabilization of exploitation ecosystems in ecological time Science 1971 385 387
[23] Fairy circle landscapes under the sea Sci. Adv. 2017 1 9
, , , , ,[24] General model for vegetation patterns including rhizome growth Phys. Rev. Res. 2020 1 8
, , ,[25] The UN decade of ocean science for sustainable development Front. Mar. Sci. 2019 470
, , , , , , , , , , , , ,[26] Wave attenuation due to Posidonia oceanica meadows J. Hydraul. Res. 2011 503 514
, ,[27] Thermal tolerance of Mediterranean marine macrophytes: vulnerability to global warming Ecol. Evol. 2018 12032 12043
, , , ,[28] Nonlinear processes in seagrass colonisation explained by simple clonal growth rules Oikos 2005 165 175
, , ,[29] Modeling nonlinear seagrass clonal growth: assessing the efficiency of space occupation across the seagrass flora Estuar. Coasts 2006 72 80
, ,[30] Accelerating loss of seagrasses across the globe threatens coastal ecosystems Proc. Natl. Acad. Sci. U.S.A. 2009 12377 12381
, , , , , , , , , , , , ,Cité par Sources :