An analysis of the buoyancy and drag parameters in Rayleigh-Taylor dynamics
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 29.

Voir la notice de l'article provenant de la source EDP Sciences

Rayleigh-Taylor instability (RTI) is of critical important in a broad range of natural and industrial processes and is an intellectual challenge for theoretical studies. In this work, we analyze the scale-dependent linear and nonlinear Rayleigh{Taylor (RT) dynamics within the group theory approach. We link the governing equations, through an associated dynamical system based on space groups, to a momentum model based on scaling transformations. In doing so, we precisely derive expressions for the buoyancy and drag parameters of the momentum model, exactly integrate the model equations and determine solutions for bubbles and for spikes in both early-time and late-time regimes. In particular, we focus on the general situation in which the instability is driven by an acceleration having power-law time dependence. Our analysis provides extensive benchmarks for future research.
DOI : 10.1051/mmnp/2023027

Des Hill 1 ; Snezhana Abarzhi 1

1 University of Western Australia, Perth, WA 6009, Australia
@article{MMNP_2023_18_a4,
     author = {Des Hill and Snezhana Abarzhi},
     title = {An analysis of the buoyancy and drag parameters in {Rayleigh-Taylor} dynamics},
     journal = {Mathematical modelling of natural phenomena},
     eid = {29},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023027/}
}
TY  - JOUR
AU  - Des Hill
AU  - Snezhana Abarzhi
TI  - An analysis of the buoyancy and drag parameters in Rayleigh-Taylor dynamics
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023027/
DO  - 10.1051/mmnp/2023027
LA  - en
ID  - MMNP_2023_18_a4
ER  - 
%0 Journal Article
%A Des Hill
%A Snezhana Abarzhi
%T An analysis of the buoyancy and drag parameters in Rayleigh-Taylor dynamics
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023027/
%R 10.1051/mmnp/2023027
%G en
%F MMNP_2023_18_a4
Des Hill; Snezhana Abarzhi. An analysis of the buoyancy and drag parameters in Rayleigh-Taylor dynamics. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 29. doi : 10.1051/mmnp/2023027. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023027/

[1] S. Abarzhi Steady state ows in Rayleigh-Taylor instability Phys. Rev. Lett. 1998 337 340

[2] S. Abarzhi Low-symmetric bubbles in Rayleigh-Taylor instability Phys. Fluids 2001 2182 2189

[3] S. Abarzhi Review on nonlinear coherent dynamics of unstable uid interface: conservation laws and group theory Physica Scripta 2008 014012

[4] S. Abarzhi On fundamentals of Rayleigh-Taylor turbulent mixing Europhys. Lett. 2010 35000

[5] S. Abarzhi Review of theoretical modeling approaches of Rayleigh-Taylor instabilities and turbulent mixing Phil. Trans. R. Soc. A 2010 1809 1828

[6] S. Abarzhi, A. Gorobets, K. Sreenivasan Turbulent mixing in immiscible, miscible and strati_ed media Phys. Fluids 2005 081705

[7] S. Abarzhi, K. Nishihara, R. Rosner Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability Phys. Rev. E 2006 036310

[8] S. Abarzhi, R. Rosner Comparative study of approaches for modeling Rayleigh-Taylor turbulent mixing Physica Scripta 2010 014012

[9] S.I. Abarzhi, A. Bhowmick, A. Naveh, A. Pandian, N. Swisher, R. Stellingwerf and W. Arnett, Supernova, nuclear synthesis, uid instabilities and interfacial mixing. Proc. Natl. Acad. Sci. U.S.A. (2018) 201714502.

[10] B. Akula, P. Suchandra, M. Mikhaeil, D. Ranjan Dynamics of unstably strati_ed free shear ows: an experimental investigation of coupled Kelvin-Helmholtz and Rayleigh-Taylor instability J. Fluid Mech. 2017 619 660

[11] U. Alon, J. Hecht, D. Offer, D. Shvarts Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all densities Phys. Rev. Lett. 1995 534

[12] S. Anisimov, R. Drake, S. Gauthier, E. Meshkov, S. Abarzhi What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing? Phil. Trans. R. Soc. A 2013 20130266

[13] D. Arnett, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present. Princeton University Press (1996).

[14] M. Buehler, H. Tang, A. Van Duin, W. Goddard Threshold crack speed controls dynamical fracture of silicon single crystals Phys. Rev. Lett. 2007 165502

[15] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. Oxford University Press (1961).

[16] R. Davies, G. Taylor The mechanics of large bubbles rising through extended liquids and through liquids in tubes Proc. R. Soc. A 1950 375 390

[17] G. Dimonte A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the alpha-group collaboration Phys. Fluids 2004 1668 1693

[18] P. Garabedian On steady-state bubbles generated by Taylor instability Proc. R. Soc. A 1957 423

[19] J. Glimm, D. Sharp, T. Kaman, H. Lim New directions for Rayleigh-Taylor mixing Phil. Trans. R. Soc. A 2013 20120183

[20] S. Haan Point design targets, speci_cations, and requirements for the 2010 ignition campaign on the national ignition facility Phys. Plasmas 2011 051001

[21] D.L. Hill, S.I. Abarzhi On the Rayleigh-Taylor unstable dynamics of 3D interfacial coherent structures with time-dependent acceleration AIP Adv. 2019 075012

[22] D.L. Hill, S.I. Abarzhi On the dynamics of Richtmyer-Meshkov bubbles in unstable 3d interfacial coherent structures with time-dependent acceleration Phys. Fluids 2020 062107

[23] D.L. Hill, S.I. Abarzhi On Rayleigh-Taylor and Richtmyer-Meshkov dynamics with inverse quadratic power-law acceleration Front. Appl. Math. Stat. 2022 735526

[24] D.L. Hill, A.K. Bhowmich, D.V. Ilyin, S.I. Abarzhi Group theory analysis of early-time scale-dependent dynamics of the Rayleigh-Taylor instability with time varying acceleration Phys. Rev. Fluids 2019 063905

[25] K. Kadau, J. Barber, T. Germann, B. Holian, B. Alder Atomistic methods in uid simulation Phil. Trans. R. Soc. A 2010 1547

[26] L. Landau and E. Lifshitz, Course of Theoretical Physics. Pergamon Press, New York (1987).

[27] D. Layzer On the instability of superposed uids in a gravitational _eld Astrophys. J. 1955 1

[28] S. Lugomer The time scale for the transition to turbulence in a high Reynolds number, accelerated ow Laser Part. Beams 2016 123 135

[29] E. Meshkov Instability of the interface of two gases accelerated by a shock Sov. Fluid Dyn. 1969 101 104

[30] E. Meshkov Some peculiar features of hydrodynamic instability development Phil. Trans. R. Soc. A 2013 20120288

[31] A. Pandiani, N. Swisher, S. Abarzhi Deterministic and stochastic dynamics of Rayleigh-Taylor mixing with a power-law time-dependent acceleration Physica Scripta 2017 014002

[32] L. Rayleigh Investigations of the character of the equilibrium of an incompressible heavy uid of variable density Proc. London Math. Soc. 1883 170 177

[33] B. Remington, et al. Rayleigh-Taylor instabilities in high-energy density settings on the national ignition facility. Proc. Natl. Acad. Sci. U.S.A. (2018) 201717236.

[34] H. Robey, Y. Zhou, A. Buckingham, P. Keiter, B. Remington, R. Drake The time scale for the transition to turbulence in a high Reynolds number, accelerated ow Phys. Plasmas 2003 614

[35] N. Swisher Rayleigh-Taylor mixing in supernova experiments Phys. Plasmas 2015 102707

[36] B. Thornber Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer-Meshkov instability Phys. Fluids 2017 105107

[37] D. Youngs The density ratio dependence of self-similar Rayleigh-Taylor mixing Phil. Trans. R. Soc. A 2013 20120173

[38] Y. Zeldovich and Y. Raizer, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena. Dover, New York (2002).

Cité par Sources :