Voir la notice de l'article provenant de la source EDP Sciences
M. Marvá 1 ; E. Venturino 2 ; M.C. Vera 1
@article{MMNP_2023_18_a21, author = {M. Marv\'a and E. Venturino and M.C. Vera}, title = {A {Minimal} {Model} {Coupling} {Communicable} and {Non-Communicable} {Diseases}}, journal = {Mathematical modelling of natural phenomena}, eid = {23}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023026/} }
TY - JOUR AU - M. Marvá AU - E. Venturino AU - M.C. Vera TI - A Minimal Model Coupling Communicable and Non-Communicable Diseases JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023026/ DO - 10.1051/mmnp/2023026 LA - en ID - MMNP_2023_18_a21 ER -
%0 Journal Article %A M. Marvá %A E. Venturino %A M.C. Vera %T A Minimal Model Coupling Communicable and Non-Communicable Diseases %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023026/ %R 10.1051/mmnp/2023026 %G en %F MMNP_2023_18_a21
M. Marvá; E. Venturino; M.C. Vera. A Minimal Model Coupling Communicable and Non-Communicable Diseases. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 23. doi : 10.1051/mmnp/2023026. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023026/
[1] Aggregation methods in dynamical systems and applications in population and community dynamics Phys. Life Rev. 2008 79 105
, , , ,[2] SIARD model and effect of lockdown on the dynamics of COVID-19 disease with non total immunity Math. Model. Natural Phenomena 2021 31
, ,[3] A clarification of transmission terms in host-microparasite models: numbers, densities and areas Epidemiol. Infect. 2002 147 153
, , , , ,[4] S. Boonpatcharanon, J. Heffernan and H. Jankowski, Estimating the basic reproduction number at the beginning of an outbreak under incomplete data. PLos One (2021).
[5] Backward bifurcations in simple vaccination models J. Math. Anal. Appl. 2004 418 431
[6] F. Brauer and C. Castillo-Chavez, Mathematical Models for Communicable Diseases. Society for Industrial and Applied Mathematics. (2012).
[7] A note on the direction of the transcritical bifurcation in epidemic models Nonlinear Anal. Model. Control 2015 38 55
[8] Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model Bull. Math. Biol. 2008 1272 1296
, ,[9] Burden of non-communicable diseases from infectious causes in 2017: a modelling study Lancet Global Health 2020 e1489 e1498
, , , ,[10] Complexity of the basic reproduction number (r0) Emerg. Infect. Dis. 2019 1 4
, , , ,[11] A model for tuberculosis with exogenous reinfection Theoret. Popul. Biol. 2000 235 247
, ,[12] Gbd risk factors collaborators: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015 Lancet 2016 1659 1724
[13] Differential equation-based minimal model describing metabolic oscillations in bacillus subtilis biofilms Roy. Soc. Open Sci. 2020 190810
, , ,[14] Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity Math. Biosci. 2000 1 25
, ,[15] Causes of backward bifurcations in some epidemiological models J. Math. Anal. Appl. 2012 355 365
[16] A primer on using mathematics to understand COVID-19 dynamics: modeling, analysis and simulations Infecti. Dis. Model. 2021 148 168
, , ,[17] Backward bifurcation in epidemic control Math. Biosci. 1997 15 35
,[18] A new generalized definition of fractional derivative with non-singular kernel Computation 2020 49
[19] On the stability and numerical scheme of fractional differential equations with application to biology Computation 2022 97
[20] K. Hattaf, A. Lashari, Y. Louartassi and N. Yousfi, A delayed SIR epidemic model with a general incidence rate. Electron. J. Qual. Theory Differ. Equ. (2013) 1–9.
[21] Separate seasons of infection and reproduction can lead to multi-year population cycles J. Theoret. Biol. 2020 110158
, , ,[22] M. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals. Princeton University, Princeton (2007).
[23] The dynamics of a simple, risk-structured HIV model Math. Biosci. Eng. 2020 4184 4209
,[24] M. Martcheva, An Introduction to Mathematical Epidemiology. Springer-Verlag GmbH (2015).
[25] A time scales approach to coinfection by opportunistic diseases J. Appl. Math. 2015 1 10
, ,[26] Modelling the role of opportunistic diseases in coinfection Math. Model. Natural Phenomena 2018 28
, ,[27] Syndemics and clinical science Nature Med. 2022 1359 1362
, , ,[28] Controlling crime with its associated cost during festive periods using mathematical techniques Chaos Solitons Fractals 2021 110801
, ,[29] Environmental risks and non-communicable diseases BMJ 2019 1265
, , , , , , , , , ,[30] Contagious criminal career models showing backward bifurcations: implications for crime control policies J. Appl. Math. 2018 1 16
, ,[31] Backward bifurcations and multiple equilibria in epidemic models with structured immunity J. Theoret. Biol. 2008 155 165
, ,[32] M. Singer, Introduction to Syndemics. John Wiley Sons, Inc. (2009).
[33] Development, coinfection, and the syndemics of pregnancy in sub-Saharan Africa Inf. Dis. Poverty 2013 2 10
[34] A simple SIS epidemic model with a backward bifurcation J. Math. Biol. 2000 525 540
,[35] Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci. 2002 29 48
,[36] A TB model: is disease eradication possible in India? Math. Biosci. Eng. 2017 233 254
,[37] WHO, The Top 10 Causes of Death. World Health Organization. Retrieved June 2021.
[38] Convergence of infectious and non-communicable disease epidemics in rural South Africa: a cross-sectional, population-based multimorbidity study Lancet Global Health 2021 e967 e976
, ,Cité par Sources :