A Minimal Model Coupling Communicable and Non-Communicable Diseases
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 23.

Voir la notice de l'article provenant de la source EDP Sciences

This work presents a model combining the simplest communicable and non-communicable disease models. The latter is, by far, the leading cause of sickness and death in the World, and introduces basal heterogeneity in populations where communicable diseases evolve. The model can be interpreted as a risk-structured model, another way of accounting for population heterogeneity. Our results show that considering the non-communicable disease (in the end, a dynamic heterogeneous population) allows the communicable disease to become endemic even if the basic reproduction number is less than 1. This feature is known as subcritical bifurcation. Furthermore, ignoring the non-communicable disease dynamics results in overestimating the basic reproduction number and, thus, giving wrong information about the actual number of infected individuals. We calculate sensitivity indices and derive interesting epidemic-control information.
DOI : 10.1051/mmnp/2023026

M. Marvá 1 ; E. Venturino 2 ; M.C. Vera 1

1 Universidad de Alcalá, Departamento de Física y Matemáticas. Member of the research group Nonlinear Dynamics and Complex Systems. Alcalá de Henares 28807, Spain
2 Dipartimento di Matematica “Giuseppe Peano”. Member of the INdAM research group GNCS. Univertitá di Torino, Torino, Italy
@article{MMNP_2023_18_a21,
     author = {M. Marv\'a and E. Venturino and M.C. Vera},
     title = {A {Minimal} {Model} {Coupling} {Communicable} and {Non-Communicable} {Diseases}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {23},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023026/}
}
TY  - JOUR
AU  - M. Marvá
AU  - E. Venturino
AU  - M.C. Vera
TI  - A Minimal Model Coupling Communicable and Non-Communicable Diseases
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023026/
DO  - 10.1051/mmnp/2023026
LA  - en
ID  - MMNP_2023_18_a21
ER  - 
%0 Journal Article
%A M. Marvá
%A E. Venturino
%A M.C. Vera
%T A Minimal Model Coupling Communicable and Non-Communicable Diseases
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023026/
%R 10.1051/mmnp/2023026
%G en
%F MMNP_2023_18_a21
M. Marvá; E. Venturino; M.C. Vera. A Minimal Model Coupling Communicable and Non-Communicable Diseases. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 23. doi : 10.1051/mmnp/2023026. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023026/

[1] P. Auger, R. Bravo De La Parra, J. Poggiale, E. Sánchez, L. Sanz Aggregation methods in dynamical systems and applications in population and community dynamics Phys. Life Rev. 2008 79 105

[2] M. Aziz-Alaoui, F. Najm, R. Yafia SIARD model and effect of lockdown on the dynamics of COVID-19 disease with non total immunity Math. Model. Natural Phenomena 2021 31

[3] M. Begon, M. Bennett, R.G. Bowers, N.P. French, S.M. Hazel, J. Turner A clarification of transmission terms in host-microparasite models: numbers, densities and areas Epidemiol. Infect. 2002 147 153

[4] S. Boonpatcharanon, J. Heffernan and H. Jankowski, Estimating the basic reproduction number at the beginning of an outbreak under incomplete data. PLos One (2021).

[5] F. Brauer Backward bifurcations in simple vaccination models J. Math. Anal. Appl. 2004 418 431

[6] F. Brauer and C. Castillo-Chavez, Mathematical Models for Communicable Diseases. Society for Industrial and Applied Mathematics. (2012).

[7] B. Buonomo A note on the direction of the transcritical bifurcation in epidemic models Nonlinear Anal. Model. Control 2015 38 55

[8] N. Chitnis, J. Hyman, J. Cushing Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model Bull. Math. Biol. 2008 1272 1296

[9] M.C. Coates, A. Kintu, N. Gupta, E.B. Wroe, A.J. Adler Burden of non-communicable diseases from infectious causes in 2017: a modelling study Lancet Global Health 2020 e1489 e1498

[10] P.L. Delamater, E.J. Street, T.F. Leslie, Y.T. Yang, K.H. Jacobsen Complexity of the basic reproduction number (r0) Emerg. Infect. Dis. 2019 1 4

[11] Z. Feng, C. Castillo-Chavez, A. Capurro A model for tuberculosis with exogenous reinfection Theoret. Popul. Biol. 2000 235 247

[12] M.H. Forouzanfar Gbd risk factors collaborators: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015 Lancet 2016 1659 1724

[13] E. Garde, B. Ibrahim, A. Kovács, S. Schuster Differential equation-based minimal model describing metabolic oscillations in bacillus subtilis biofilms Roy. Soc. Open Sci. 2020 190810

[14] D. Greenhalgh, O. Diekmann, M. De Jong Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity Math. Biosci. 2000 1 25

[15] A. Gumel Causes of backward bifurcations in some epidemiological models J. Math. Anal. Appl. 2012 355 365

[16] A. Gumel, E. Iboi, C. Ngonghala, E. Elbasha A primer on using mathematics to understand COVID-19 dynamics: modeling, analysis and simulations Infecti. Dis. Model. 2021 148 168

[17] K. Hadeler, P.V. Den Driessche Backward bifurcation in epidemic control Math. Biosci. 1997 15 35

[18] K. Hattaf A new generalized definition of fractional derivative with non-singular kernel Computation 2020 49

[19] K. Hattaf On the stability and numerical scheme of fractional differential equations with application to biology Computation 2022 97

[20] K. Hattaf, A. Lashari, Y. Louartassi and N. Yousfi, A delayed SIR epidemic model with a general incidence rate. Electron. J. Qual. Theory Differ. Equ. (2013) 1–9.

[21] F. Hilker, T. Sun, L. Allen, F. Hamelin Separate seasons of infection and reproduction can lead to multi-year population cycles J. Theoret. Biol. 2020 110158

[22] M. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals. Princeton University, Princeton (2007).

[23] K. Mark, T. Dobromir The dynamics of a simple, risk-structured HIV model Math. Biosci. Eng. 2020 4184 4209

[24] M. Martcheva, An Introduction to Mathematical Epidemiology. Springer-Verlag GmbH (2015).

[25] M. Marvá, E. Venturino, R.B. De La Parra A time scales approach to coinfection by opportunistic diseases J. Appl. Math. 2015 1 10

[26] M. Marvá, R.B. De La Parra, E. Venturino Modelling the role of opportunistic diseases in coinfection Math. Model. Natural Phenomena 2018 28

[27] E. Mendenhall, B.A. Kohrt, C.H. Logie, A.C. Tsai Syndemics and clinical science Nature Med. 2022 1359 1362

[28] N.-D.O. Opoku, G. Bader, E. Fiatsonu Controlling crime with its associated cost during festive periods using mathematical techniques Chaos Solitons Fractals 2021 110801

[29] A. Prüss-Ustün, E. Van Deventer, P.P. Mudu, D. Campbell-Lendrum, C. Vickers, I. Ivanov, F. Forastiere, S. Gumy, C. Dora, H. Adair-Rohani, M. Neira Environmental risks and non-communicable diseases BMJ 2019 1265

[30] S.M. Raimundo, H. Yang, E. Massad Contagious criminal career models showing backward bifurcations: implications for crime control policies J. Appl. Math. 2018 1 16

[31] T. Reluga, J. Medlock, A. Perelson Backward bifurcations and multiple equilibria in epidemic models with structured immunity J. Theoret. Biol. 2008 155 165

[32] M. Singer, Introduction to Syndemics. John Wiley Sons, Inc. (2009).

[33] M. Singer Development, coinfection, and the syndemics of pregnancy in sub-Saharan Africa Inf. Dis. Poverty 2013 2 10

[34] P. Van Den Driessche, J. Watmough A simple SIS epidemic model with a backward bifurcation J. Math. Biol. 2000 525 540

[35] P. Van Den Driessche, J. Watmough Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci. 2002 29 48

[36] E. Venturino, S. Pandey A TB model: is disease eradication possible in India? Math. Biosci. Eng. 2017 233 254

[37] WHO, The Top 10 Causes of Death. World Health Organization. Retrieved June 2021.

[38] E. Wong, S. Olivier, R. Gunda Convergence of infectious and non-communicable disease epidemics in rural South Africa: a cross-sectional, population-based multimorbidity study Lancet Global Health 2021 e967 e976

Cité par Sources :