A phenotype-structured model for the tumour-immune response
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 22.

Voir la notice de l'article provenant de la source EDP Sciences

This paper presents a mathematical model for tumour-immune response interactions in the perspective of immunotherapy by immune checkpoint inhibitors (ICIs). The model is of the nonlocal integro-differential Lotka-Volterra type, in which heterogeneity of the cell populations is taken into account by structuring variables that are continuous internal traits (aka phenotypes) present in each individual cell. These represent a lumped “aggressiveness”, i.e., for tumour cells, malignancy understood as the ability to thrive in a viable state under attack by immune cells or drugs – which we propose to identify as a potential of de-differentiation–, and for immune cells, ability to kill tumour cells, in other words anti-tumour efficacy. We analyse the asymptotic behaviour of the model in the absence of treatment. By means of two theorems, we characterise the limits of the integro-differential system under an a priori convergence hypothesis. We illustrate our results with a few numerical simulations, which show that our model reproduces the three Es of immunoediting: elimination, equilibrium, and escape. Finally, we exemplify the possible impact of ICIs on these three Es.
DOI : 10.1051/mmnp/2023025

Zineb Kaid 1 ; Camille Pouchol 2 ; Jean Clairambault 3

1 Laboratory of Biomathematics, University Djillali Liabes, BP 89, 22000 Sidi Bel Abbes, Algeria, and Dynamical Systems and Applications Laboratory, Department of Mathematics, Faculty of Sciences, University Abou Bekr Belkaid, BP 119, 13000 Tlemcen, Algeria
2 Université Paris Cité, MAP5 (UMR 8145), FP2M, CNRS FR 2036, 75006 Paris, France
3 Laboratoire Jacques-Louis Lions, Sorbonne Université, UPMC Univ. Paris 06, CNRS UMR 7598, 4, place Jussieu, BC 187, 75252 Paris Cedex 05, France, and Team Mamba, INRIA Paris, 2 rue Simone Iff, CS 42112, 75589 Paris cedex 12, France
@article{MMNP_2023_18_a33,
     author = {Zineb Kaid and Camille Pouchol and Jean Clairambault},
     title = {A phenotype-structured model for the tumour-immune response},
     journal = {Mathematical modelling of natural phenomena},
     eid = {22},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023025/}
}
TY  - JOUR
AU  - Zineb Kaid
AU  - Camille Pouchol
AU  - Jean Clairambault
TI  - A phenotype-structured model for the tumour-immune response
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023025/
DO  - 10.1051/mmnp/2023025
LA  - en
ID  - MMNP_2023_18_a33
ER  - 
%0 Journal Article
%A Zineb Kaid
%A Camille Pouchol
%A Jean Clairambault
%T A phenotype-structured model for the tumour-immune response
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023025/
%R 10.1051/mmnp/2023025
%G en
%F MMNP_2023_18_a33
Zineb Kaid; Camille Pouchol; Jean Clairambault. A phenotype-structured model for the tumour-immune response. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 22. doi : 10.1051/mmnp/2023025. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023025/

[1] A.M. Abel, C. Yang, M.S. Thakar, S. Malarkannan Natural killer cells: development, maturation, and clinical utilization Front. Immunol. 2018 1869

[2] L. Almeida, P. Bagnerini, G. Fabrini, B.D. Hughes, T. Lorenzi Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model ESAIM: Math. Model. Numer. Anal. 2019 1157 1190

[3] F.E. Alvarez, J.A. Carrillo, J. Clairambault Evolution of a structured cell population endowed with plasticity of traits under constraints on and between the traits J. Math. Biol. 2022 64

[4] E.F. Alvarez and J. Clairambault, Phenotype divergence and cooperation in isogenic multicellularity and in cancer. Submitted, June 2023. https://hal.science/hal-04145070

[5] A. Ardaševa, R.A. Gatenby, A.R.A. Anderson, H.M. Byrne, P.K. Maini, T. Lorenzi A mathematical dissection of the adaptation of cell populations to fluctuating oxygen levels Bull. Math. Biol. 2020 81

[6] M. Bertolaso, Philosophy of Cancer. A Dynamic and Relational View. Springer Publisher (2016).

[7] N. Champagnat R. Ferrière and Méléard, From individual stochastic processes to macroscopic models in adaptive evolution Stochastic Models 2008 2 44

[8] R.H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L. Almeida, A. Escargueil, J. Clairambault Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation Cancer Res. 2015 930 939

[9] R.H. Chisholm, T. Lorenzi, J. Clairambault Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation Biochem. Biophys. Acta 2016 2627 2645

[10] R.H. Chisholm, T. Lorenzi, L. Desvillettes, B.D. Hughes Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences Z. Angew. Math. Phys. 2016 100

[11] J. Clairambault, C. Pouchol A survey of adaptive cell population dynamics models of emergence of drug resistance in cancer, and open questions about evolution and cancer BIOMATH 2019 23

[12] J. Clairambault, Plasticity in cancer cell populations: biology, mathematics and philosophy of cancer, in Springer LNBI 12508, edited by G. Bebis, M. Alekseyev, H. Cho, J. Gevertz and M. Rodriguez Martinez. (2020) 3–9.

[13] J. Clairambault, Mathematical modelling of cancer growth and drug treatments: taking into account cell population heterogeneity and plasticity. Paper #427 in Proceedings of ECC 2023 European Conference on Control, Bucharest, June 2023.

[14] M. Delitala, T. Lorenzi Recognition and learning in a mathematical model for immune response against cancer Discrete Continuous Dyn. Syst. B 2013 891

[15] Y.Y. Han, D.D. Liu, L.H. Li PD-1/PD-L1 pathway: current researches in cancer Am. J. Cancer Res. 2020 727 742

[16] Z. Kaid, A. Lakmeche, J. Clairambault, M. Helal A dynamic model of tumor growth and of the immune response Nonlinear Stud. 2023 1 23

[17] R. Kalluri, R.A. Weinberg The basics of epithelial-mesenchymal transition J. Clin. Invest. 2009 1420 1428

[18] J.H. Lee, E. Shklovskaya, S.Y. Lim, M.S. Carlino, A.M. Menzies, A. Stewart, B. Pedersen, M. Irvine, S. Alavi, J.Y.H. Yang, D. Strbenac, R.P.M. Saw, J.F. Thompson, J.S. Wilmott, R.A. Scolyer, G.V. Long, R.F. Kefford, H. Rizos Transcriptional downregulation of MHC class I and melanoma de-differentiation in resistance to PD-1 inhibition Nat. Commun. 2020 1897

[19] F. Le Louedec, F. Leenhardt, C. Marin, A. Chatelut, A. Evrard, J. Ciccolini Cancer immunotherapy dosing: a pharmacokinetic/pharmacodynamic perspective Vaccines 2020 632

[20] T. Lorenzi, R.H. Chisholm, J. Clairambault Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations Biol. Direct 2016 1 17

[21] T. Lorenzi, C. Pouchol Asymptotic analysis of selection-mutation models in the presence of multiple fitness peaks Nonlinearity 2020 5791

[22] A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault, B. Perthame Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies Math. Model. Numer. Anal. 2013 377 399

[23] C.E. Meacham, S.J. Morrison Tumour heterogeneity and cancer cell plasticity Nature 2013 328 337

[24] L.G. Meza Guzman, L. Keating, S.E. Nicholson Natural killer cells: tumor surveillance and signaling Cancers 2020 952

[25] A. Olivier, C. Pouchol Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer J. Optim. Theory Appl. 2019 479 503

[26] B. Perthame, Transport Equations in Biology. Birkhäuser, Boston (2007).

[27] S. Pesce, M. Greppi, F. Grossi, G. Del Zotto, L. Moretta, S. Sivori, C. Genova, E. Marcenaro PD/1-PD-Ls Checkpoint: insight on the potential role of NK cells Front. Immunol. 2019 1242

[28] C. Pouchol, J. Clairambault, A. Lorz, E. Trélat Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy J. Math. Pures Appl. 2018 268 308

[29] C. Pouchol, Modelling interactions between tumour cells and supporting adipocytes in breast cancer. PhD thesis, UPMC (2015).

[30] T. Pradeu, Philosophy of Immunology. Cambridge University Press (2019).

[31] C. Robert, J. Schachter, G.V. Long, A. Arance, J.J. Grob, L. Mortier, J. Larkin Pembrolizumab versus ipilimumab in advanced melanoma N. Engl. J. Med. 2015 2521 2532

[32] R.D. Schreiber, L.J. Old, M.J. Smyth Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion Science 2011 1565 1570

[33] S.V. Sharma, D.Y. Lee, B. Li, M.P. Quinlan, F. Takahashi, S. Maheswaran, U. Mcdermott, N. Azizian, L. Zou, M.A. Fischbach, K.-K. Wong, K. Brandstetter, B. Wittner, S. Ramaswamy, M. Classon, J. Settleman A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations Cell 2010 69 80

[34] S. Shen, J. Clairambault Cell plasticity in cancer cell populations (review) [version 1 F1000Research 2020 635 650

[35] T.H. Stewart Immune mechanism and tumour dormancy Rev. Med. 1996 74

[36] D.G. Tang Understanding cancer stem cell heterogeneity and plasticity Cell Res. 2012 457 472

[37] K. Takahashi, S. Yamanaka Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell 2006 663 676

[38] A.M. Van Der Leun, D.S. Thommen, T.N. Schumacher CD8+ T cell states in human cancer: insights from single-cell analysis Nat. Rev. Cancer 2020 218 232

[39] N. Wright and M. Alison, The Biology of Epithelial Cell Populations. Oxford University Press (1984).

[40] Y.A. Yabo, S.P. Niclou, A. Golebiewska Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma Neuro-oncology 2022 669 682

[41] H. Zhang, Z. Dai, Z. Wang, N. Zhang, L. Zhang, W.-J. Zeng, Z. Liu, Q. Cheng Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer J. Exp. Clin. Cancer Res. 2021 184

[42] L.I. Zon (Ed.), Hematopoiesis: A Developmental Approach. Oxford University Press (2001).

Cité par Sources :