Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2023_18_a20, author = {Florian Lavigne}, title = {Adaptation of an asexual population with environmental changes}, journal = {Mathematical modelling of natural phenomena}, eid = {20}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023024}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023024/} }
TY - JOUR AU - Florian Lavigne TI - Adaptation of an asexual population with environmental changes JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023024/ DO - 10.1051/mmnp/2023024 LA - en ID - MMNP_2023_18_a20 ER -
Florian Lavigne. Adaptation of an asexual population with environmental changes. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 20. doi : 10.1051/mmnp/2023024. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023024/
[1] The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition SIAM J. Math. Anal. 2017 562 596
, ,[2] Explicit solutions for replicator-mutator equations: extinction versus acceleration SIAM J. Appl. Math. 2014 1919 1934
,[3] Replicator-mutator equations with quadratic fitness Proc. Am. Math. Soc. 2017 5315 5327
,[4] Parabolic equations with unbounded coefficients J. Differ. Eq. 1967 1 14
,[5] Concentration in Lotka–Volterra parabolic or integral equations: a general convergence result Methods Appl. Anal. 2009 321 340
, ,[6] Can a species keep pace with a shifting climate? Bull. Math. Biol. 2009 399 429
, , ,[7] Forced waves of the fisher–kpp equation in a shifting environment J. Differ. Eq. 2018 2157 2183
,[8] Reaction-diffusion equations for population dynamics with forced speed I - Disc. Cont. Dyn. Syst. A 2008 41 67
,[9] Influence of mutations in phenotypically-structured populations in time periodic environment Disc. Cont. Dyn. Syst. B 2020 3609
,[10] Sur la construction de la solution fondamentale de l’équation parabolique aux coefficients non bornés Colloq. Math. 1970 141 148
[11] The balance between mutators and nonmutators in asexual populations Genetics 2011 997 1014
,[12] The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach Theor. Popul. Biol. 2005 257 271
, , ,[13] Long time evolutionary dynamics of phenotypically structured populations in time- periodic environments SIAM J. Math. Anal. 2018 5537 5568
,[14] S. Figueroa Iglesias and S. Mirrahimi, Selection and mutation in a shifting and fluctuating environment. arXiv preprint arXiv: 2103.07317, 2021.
[15] A Hamilton–Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations Comptes Rendus Math. 2017 155 160
,[16] Complete genetic linkage can subvert natural selection Proc. Natl. Acad. Sci. U.S.A. 2007 6266 6271
, , ,[17] Mathematical properties of a class of integro-differential models from population genetics SIAM J. Appl. Math. 2017 1536 1561
, , ,[18] M.-E. Gil, F. Hamel, G. Martin and L. Roques, Dynamics of fitness distributions in the presence of a phenotypic optimum: an integro-differential approach. Nonlinearity, (2019) in press[CE1].
[19] Dynamics of adaptation in an anisotropic phenotype-fitness landscape Nonlinear Anal. Real World Appl. 2020 103107
, , ,[20] Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia Ecotoxicology 2011 543 551
, , ,[21] When sinks become sources: adaptive colonization in asexuals Evolution 2020 29 42
, , , ,[22] Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments J. Theor. Biol. 2015 166 176
, , ,[23] Dirac mass dynamics in multidimensional nonlocal parabolic equations Commun. Part. Differ. Eq. 2011 1071 1098
, ,[24] The different mechanisms of cancer drug resistance: a brief review Adv. Pharm. Bull. 2017 339
, , , ,[25] The non-stationary dynamics of fitness distributions: Asexual model with epistasis and standing variation Genetics 2016 1541 1558
,[26] B. Perthame and G. Barles, Dirac concentrations in Lotka–Volterra parabolic PDEs. Indiana Univ. Math. J. (2008) 3275–3301.
[27] L. Roques, F. Patout, O. Bonnefon and G. Martin, Adaptation in general temporally changing environments. SIAM J. Appl. Math. (2020).
[28] Beneficial mutations and the dynamics of adaptation in asexual populations Philos. Trans.Royal Soc. B: Biol. Sci. 2010 1255 1263
,[29] Source-sink dynamics of virulence evolution Nat. Rev. Microbiol. 2006 548
, ,[30] The utility of Fisher’s geometric model in evolutionary genetics Annu. Rev. Ecol. Evol. Syst. 2014 179 201
[31] RNA virus evolution via a fitness-space model Phys. Rev. Lett. 1996 4440 4443
, ,Cité par Sources :