Adaptation of an asexual population with environmental changes
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 20.

Voir la notice de l'article provenant de la source EDP Sciences

Because of mutations and selection, pathogens can manage to resist to drugs. However, the evolution of an asexual population (e.g., viruses, bacteria and cancer cells) depends on some external factors (e.g., antibiotic concentrations), and so understanding the impact of the environmental changes is an important issue.This paper is devoted to model this problem with a nonlocal diffusion PDE, describing the dynamics of such a phenotypically structured population, in a changing environment. The large-time behaviour of this model, with particular forms of environmental changes (linear or periodically fluctuations), has been previously developed. A new mathematical approach (limited to isotropic mutations) has been developed recently for this problem, considering a very general form of environmental variations, and giving an analytic description of the full trajectories of adaptation.However, recent studies have shown that an anisotropic mutation kernel can change the evolutionary dynamics of the population: some evolutive plateaus can appear. Thus the aim of this paper is to mix the two previous studies, with an anisotropic mutation kernel, and a changing environment. The main idea is to study a multivariate distribution of (2n) “fitness components”. Its generating function solves a transport equation, and describes the distribution of fitness at any time.
DOI : 10.1051/mmnp/2023024

Florian Lavigne 1

1 Univ Rouen Normandie, LMRS, UMR6085, 76000 Rouen, France
@article{MMNP_2023_18_a20,
     author = {Florian Lavigne},
     title = {Adaptation of an asexual population with environmental changes},
     journal = {Mathematical modelling of natural phenomena},
     eid = {20},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023024/}
}
TY  - JOUR
AU  - Florian Lavigne
TI  - Adaptation of an asexual population with environmental changes
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023024/
DO  - 10.1051/mmnp/2023024
LA  - en
ID  - MMNP_2023_18_a20
ER  - 
%0 Journal Article
%A Florian Lavigne
%T Adaptation of an asexual population with environmental changes
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023024/
%R 10.1051/mmnp/2023024
%G en
%F MMNP_2023_18_a20
Florian Lavigne. Adaptation of an asexual population with environmental changes. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 20. doi : 10.1051/mmnp/2023024. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023024/

[1] M. Alfaro, H. Berestycki, G Raoul The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition SIAM J. Math. Anal. 2017 562 596

[2] M. Alfaro, R. Carles Explicit solutions for replicator-mutator equations: extinction versus acceleration SIAM J. Appl. Math. 2014 1919 1934

[3] M. Alfaro, R. Carles Replicator-mutator equations with quadratic fitness Proc. Am. Math. Soc. 2017 5315 5327

[4] D.G. Aronson, P. Besala Parabolic equations with unbounded coefficients J. Differ. Eq. 1967 1 14

[5] G. Barles, S. Mirrahimi, B. Perthame Concentration in Lotka–Volterra parabolic or integral equations: a general convergence result Methods Appl. Anal. 2009 321 340

[6] H. Berestycki, O. Diekmann, C.J. Nagelkerke, P.A. Zegeling Can a species keep pace with a shifting climate? Bull. Math. Biol. 2009 399 429

[7] H. Berestycki, J. Fang Forced waves of the fisher–kpp equation in a shifting environment J. Differ. Eq. 2018 2157 2183

[8] H. Berestycki, L. Rossi Reaction-diffusion equations for population dynamics with forced speed I - Disc. Cont. Dyn. Syst. A 2008 41 67

[9] C. Carrere, G. Nadin Influence of mutations in phenotypically-structured populations in time periodic environment Disc. Cont. Dyn. Syst. B 2020 3609

[10] J. Chabrowski Sur la construction de la solution fondamentale de l’équation parabolique aux coefficients non bornés Colloq. Math. 1970 141 148

[11] M.M. Desai, D.S. Fisher The balance between mutators and nonmutators in asexual populations Genetics 2011 997 1014

[12] O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach Theor. Popul. Biol. 2005 257 271

[13] S. Figueroa Iglesias, S. Mirrahimi Long time evolutionary dynamics of phenotypically structured populations in time- periodic environments SIAM J. Math. Anal. 2018 5537 5568

[14] S. Figueroa Iglesias and S. Mirrahimi, Selection and mutation in a shifting and fluctuating environment. arXiv preprint arXiv: 2103.07317, 2021.

[15] S. Gandon, S. Mirrahimi A Hamilton–Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations Comptes Rendus Math. 2017 155 160

[16] P.J. Gerrish, A. Colato, A.S Perelson, P.D. Sniegowski Complete genetic linkage can subvert natural selection Proc. Natl. Acad. Sci. U.S.A. 2007 6266 6271

[17] M.-E. Gil, F. Hamel, G. Martin, L. Roques Mathematical properties of a class of integro-differential models from population genetics SIAM J. Appl. Math. 2017 1536 1561

[18] M.-E. Gil, F. Hamel, G. Martin and L. Roques, Dynamics of fitness distributions in the presence of a phenotypic optimum: an integro-differential approach. Nonlinearity, (2019) in press[CE1].

[19] F. Hamel, F. Lavigne, G. Martin, L. Roques Dynamics of adaptation in an anisotropic phenotype-fitness landscape Nonlinear Anal. Real World Appl. 2020 103107

[20] M. Jansen, A. Coors, R. Stoks, L. De Meester Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia Ecotoxicology 2011 543 551

[21] F. Lavigne, G. Martin, Y. Anciaux, J. Papaix, L. Roques When sinks become sources: adaptive colonization in asexuals Evolution 2020 29 42

[22] T. Lorenzi, R. Chisholm, L. Desvillettes, B. Hughes Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments J. Theor. Biol. 2015 166 176

[23] A. Lorz, S. Mirrahimi, B. Perthame Dirac mass dynamics in multidimensional nonlocal parabolic equations Commun. Part. Differ. Eq. 2011 1071 1098

[24] B. Mansoori, A. Mohammadi, S. Davudian, S. Shirjang, B Baradaran The different mechanisms of cancer drug resistance: a brief review Adv. Pharm. Bull. 2017 339

[25] G. Martin, L. Roques The non-stationary dynamics of fitness distributions: Asexual model with epistasis and standing variation Genetics 2016 1541 1558

[26] B. Perthame and G. Barles, Dirac concentrations in Lotka–Volterra parabolic PDEs. Indiana Univ. Math. J. (2008) 3275–3301.

[27] L. Roques, F. Patout, O. Bonnefon and G. Martin, Adaptation in general temporally changing environments. SIAM J. Appl. Math. (2020).

[28] P.D. Sniegowski, P.J. Gerrish Beneficial mutations and the dynamics of adaptation in asexual populations Philos. Trans.Royal Soc. B: Biol. Sci. 2010 1255 1263

[29] E.V. Sokurenko, R. Gomulkiewicz, D.E. Dykhuizen Source-sink dynamics of virulence evolution Nat. Rev. Microbiol. 2006 548

[30] O. Tenaillon The utility of Fisher’s geometric model in evolutionary genetics Annu. Rev. Ecol. Evol. Syst. 2014 179 201

[31] L.S. Tsimring, H. Levine, D.A. Kessler RNA virus evolution via a fitness-space model Phys. Rev. Lett. 1996 4440 4443

Cité par Sources :