Hypoxia-resistance heterogeneity in tumours: the impact of geometrical characterization of environmental niches and evolutionary trade-offs. A mathematical approach
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 18.

Voir la notice de l'article provenant de la source EDP Sciences

In the study of cancer evolution and therapeutic strategies, scientific evidence shows that a key dynamics lies in the tumour-environment interaction. In particular, oxygen concentration plays a central role in the determination of the phenotypic heterogeneity of cancer cell populations, whose qualitative and geometric characteristics are predominant factors in the occurrence of relapses and failure of eradication. We propose a mathematical model able to describe the eco-evolutionary spatial dynamics of tumour cells in their adaptation to hypoxic microenvironments. As a main novelty with respect to the existing literature, we combine a phenotypic indicator reflecting the experimentally-observed metabolic trade-off between the hypoxia-resistance ability and the proliferative potential with a 2d geometric domain, without the constraint of radial symmetry. The model is settled in the mathematical framework of phenotype-structured population dynamics and it is formulated in terms of systems of coupled non-linear integro-differential equations. The computational outcomes demonstrate that hypoxia-induced selection results in a geometric characterization of phenotypic-defined tumour niches that impact on tumour aggressiveness and invasive ability. Furthermore, results show how the knowledge of environmental characteristics provides a predictive advantage on tumour mass development in terms of size, shape, and composition.
DOI : 10.1051/mmnp/2023023

Giulia Chiari 1, 2, 3 ; Giada Fiandaca 4 ; Marcello Edoardo Delitala 1

1 Department of Mathematical Sciences “G. L. Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2 Department of Mathematics “G. Peano”, Università di Torino, Via Carlo Alberto 10, 10124 Torino, Italy
3 Department of Mathematics, Swinburne University of Technology, John Street, Hawthorn VIC 3122, Australia
4 Department of Cellular, Computational and Integrative Biology - CIBIO, Università degli Studi di Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
@article{MMNP_2023_18_a31,
     author = {Giulia Chiari and Giada Fiandaca and Marcello Edoardo Delitala},
     title = {Hypoxia-resistance heterogeneity in tumours: the impact of geometrical characterization of environmental niches and evolutionary trade-offs. {A} mathematical approach},
     journal = {Mathematical modelling of natural phenomena},
     eid = {18},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023023/}
}
TY  - JOUR
AU  - Giulia Chiari
AU  - Giada Fiandaca
AU  - Marcello Edoardo Delitala
TI  - Hypoxia-resistance heterogeneity in tumours: the impact of geometrical characterization of environmental niches and evolutionary trade-offs. A mathematical approach
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023023/
DO  - 10.1051/mmnp/2023023
LA  - en
ID  - MMNP_2023_18_a31
ER  - 
%0 Journal Article
%A Giulia Chiari
%A Giada Fiandaca
%A Marcello Edoardo Delitala
%T Hypoxia-resistance heterogeneity in tumours: the impact of geometrical characterization of environmental niches and evolutionary trade-offs. A mathematical approach
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023023/
%R 10.1051/mmnp/2023023
%G en
%F MMNP_2023_18_a31
Giulia Chiari; Giada Fiandaca; Marcello Edoardo Delitala. Hypoxia-resistance heterogeneity in tumours: the impact of geometrical characterization of environmental niches and evolutionary trade-offs. A mathematical approach. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 18. doi : 10.1051/mmnp/2023023. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023023/

[1] C. Aktipis, A.M. Boddy, R.A. Gatenby, J.S. Brown, C.C. Maley Life history trade-offs in cancer evolution Nat. Rev. Cancer 2013 883 892

[2] L. Almeida, R.H. Chisholm, J. Clairambault, T. Lorenzi, A. Lorz, C. Pouchol and E. Trélat, Why is evolution important in cancer and what mathematics should be used to treat cancer? Focus on drug resistance. Trends Biomath. Model. Optim. Comput. Probl. (2018) 107–120.

[3] D. Ansari, H. Friess, M. Bauden, J. Samnegård, R. Andersson Pancreatic cancer: disease dynamics, tumor biology and the role of the microenvironment Oncotarget 2018 6644

[4] A. Ardaševa, R.A. Gatenby, A.R. Anderson, H.M. Byrne, P.K. Maini, T. Lorenzi A mathematical dissection of the adaptation of cell populations to fluctuating oxygen levels Bull. Math. Biol. 2020 1 24

[5] S. Astanin, L. Preziosi Mathematical modelling of the warburg effect in tumour cords J. Theoret. Biol. 2009 578 590

[6] S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J.M. Ebos, L. Hlatky, P. Hahnfeldt Classical mathematical models for description and prediction of experimental tumor growth PLoS Comput. Biol. 2014 e1003800

[7] S. Bhatia, P. Wang, A. Toh, E.W. Thompson New insights into the role of phenotypic plasticity and emt in driving cancer progression Front. Mol. Biosci. 2020 71

[8] J.M. Brown, W.R. Wilson Exploiting tumour hypoxia in cancer treatment Nat. Rev. Cancer 2004 437 447

[9] E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul, R. Voituriez Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration Comptes Rendus Math. 2012 761 766

[10] A.M. Boddy, W. Huang, A. Aktipis Life history trade-offs in tumors Curr. Pathobiol. Rep. 2018 201 207

[11] R.H. Chisholm, T. Lorenzi, J. Clairambault Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation Biochim. Biophys. Acta (BBA) – Gen. Subj. 2016 2627 2645

[12] J. Clairambault, O. Fercoq Physiologically structured cell population dynamic models with applications to combined drug delivery optimisation in oncology Math. Model. Natural Phenomena 2016 45 70

[13] G. Chiari, G. Fiandaca, M.E. Delitala Hypoxia-related radiotherapy resistance in tumours: treatment efficacy investigation in an eco-evolutionary perspective Front. Appl. Math. Stat. 2023 104063

[14] G. Chiari, M.E. Delitala, D. Morselli, M. Scianna A hybrid modeling environment to describe aggregates of cells heterogeneous for genotype and behavior with possible phenotypic transitions Int. J. Non-Linear Mech. 2022 104063

[15] P. Cumsille, A. Coronel, C. Conca, C. Quiñinao, C. Escudero Proposal of a hybrid approach for tumor progression and tumor-induced angiogenesis Theoret. Biol. Med. Model. 2015 1 22

[16] M. Damaghi, J. West, M. Robertson-Tessi, L. Xu, M.C. Ferrall-Fairbanks, P. A. Stewart, E. Persi, B.L. Fridley, P.M. Altrock, R.A. Gatenby The harsh microenvironment in early breast cancer selects for a warburg Phenotype Proc. Natl. Acad. Sci. U.S.A. 2021 e2011342118

[17] A. Daşu, I. Toma-Dasu, M. Karlsson Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia Phys. Med. Biol. 2003 2829

[18] V.M. De Oliveira, A. Amado, P.R. Campos The interplay of tradeoffs within the framework of a resource-based modelling Ecol. Model. 2018 249 260

[19] W. Doerfler and P. Böhm, DNA methylation: development, genetic disease and cancer, Vol. 310. Springer Science Business Media (2006).

[20] P. Domschke, D. Trucu, A. Gerisch, M.A. Chaplain Structured models of cell migration incorporating molecular binding processes J. Math. Biol. 2017 1517 1561

[21] E. Ehrlich, L. Becks, U. Gaedke Trait–fitness relationships determine how trade-off shapes affect species coexistence Ecology 2017 3188 3198

[22] R. Fisher, L. Pusztai, C. Swanton Cancer heterogeneity: implications for targeted therapeutics Br. J. cancer 2013 479 485

[23] G. Fiandaca, M. Delitala, T. Lorenzi A mathematical study of the influence of hypoxia and acidity on the evolutionary dynamics of cancer Bull. Math. Biol. 2021 83

[24] E. Flashner-Abramson, S. Vasudevan, I.A. Adejumobi, A. Sonnenblick, N. Kravchenko-Balasha Decoding cancer heterogeneity: studying patient-specific signaling signatures towards personalized cancer therapy Theranostics 2019 5149

[25] J. Folkman, M. Hochberg Self-regulation of growth in three dimensions J. Exp. Med. 1973 745 753

[26] R.A. Gatenby, K. Smallbone, P.K. Maini, F. Rose, J. Averill, R.B. Nagle, L. Worrall, R.J. Gillies Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer Br. J. Cancer 2007 646 653

[27] R.A. Gatenby, J.S. Brown Integrating evolutionary dynamics into cancer therapy Nat. Rev. Clin. Oncol. 2020 675 686

[28] A. Ibrahim-Hashim, R.J. Gillies, J.S. Brown and R.A. Gatenby, Coevolution of tumor cells and their microenvironment: “niche construction in cancer”, in Ecology and Evolution of Cancer. Elsevier (2017) 111–117.

[29] P.-E. Jabin, G. Raoul On selection dynamics for competitive interactions J. Math. Biol. 2011 493 517

[30] K.S. Korolev, J.B. Xavier, J. Gore Turning ecology and evolution against cancer Nat. Rev. Cancer 2014 371 380

[31] H.P. Langtangen and A. Logg, Solving PDEs in Python. Springer (2017).

[32] M. Leszczyński, U. Ledzewicz, H. Schättler Optimal control for a mathematical model for chemotherapy with pharmacometrics Math. Model. Natural Phenomena 2020 69

[33] S.Y. Lee, M.K. Ju, H.M. Jeon, E.K. Jeong, Y.J. Lee, C.H. Kim, H.G. Park, S.I. Han, H.S. Kang Regulation of tumor progression by programmed necrosis Oxid. Med. Cell. Longev. 2018 1 28

[34] T. Lorenzi, R.H. Chisholm, J. Clairambault Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations Biol. Direct 2016 1 17

[35] A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull. Math. Biol. 2015 1 22

[36] T. Lorenzi, C. Venkataraman, A. Lorz, M.A. Chaplain The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity J. Theor. Biol. 2018 101 110

[37] C. Maley, A. Aktipis, T. Graham, A. Sottoriva Classifying the evolutionary and ecological features of neoplasms Nat. Rev. Cancer 2017 605 619

[38] A. Martínez-González, G.F. Calvo, L.A. Pérez Romasanta, V.M. Pérez-García Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model and its therapeutic implications Bull. Math. Biol. 2012 2875 2896

[39] S. Nawaz, N.A. Trahearn, A. Heindl, S. Banerjee, C.C. Maley, A. Sottoriva, Y. Yuan Analysis of tumour ecological balance reveals resource-dependent adaptive strategies of ovarian cancer EBioMedicine 2019 224 235

[40] M.-E. Oraiopoulou, E. Tzamali, G. Tzedakis, A. Vakis, J. Papamatheakis, V. Sakkalis In vitro/in silico study on the role of doubling time heterogeneity among primary glioblastoma cell lines Biomed. Res. Int. 2017 1 12

[41] M.J. Pollheimer, P. Kornprat, R.A. Lindtner, L. Harbaum, A. Schlemmer, P. Rehak, C. Langner Tumor necrosis is a new promising prognostic factor in colorectal cancer Hum. Pathol. 2010 1749 1757

[42] K. Ruan, G. Song, G. Ouyang Role of hypoxia in the hallmarks of human cancer J. Cell. Biochem. 2009 1053 1062

[43] B. Shashni, S. Ariyasu, R. Takeda, T. Suzuki, S. Shiina, K. Akimoto, T. Maeda, N. Aikawa, R. Abe, T. Osaki, N. Itoh, S. Aoki Size-based differentiation of cancer and normal cells by a particle size analyzer assisted by a cell-recognition PC software Biol. Pharmaceut. Bull. 2018 487 503

[44] M.A. Strobl, A.L. Krause, M. Damaghi, R. Gillies, A.R. Anderson, P.K. Maini Mix and match: Phenotypic coexistence as a key facilitator of cancer invasion Bull. Math. Biol. 2020 1 26

[45] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA 2021 394 424

[46] P. Vaupel, O. Thews, M. Hoeckel Treatment resistance of solid tumors Med. Oncol. 2001 243 259

[47] C. Villa, M.A. Chaplain, T. Lorenzi Modeling the emergence of phenotypic heterogeneity in vascularized tumors SIAM J. Appl. Math. 2021 434 453

[48] C. Villa, M.A. Chaplain, T. Lorenzi Evolutionary dynamics in vascularised tumours under chemotherapy: mathematical modelling, asymptotic analysis and numerical simulations Vietnam J. Math. 2021 143 167

Cité par Sources :