Voir la notice de l'article provenant de la source EDP Sciences
Giulia Chiari 1, 2, 3 ; Giada Fiandaca 4 ; Marcello Edoardo Delitala 1
@article{MMNP_2023_18_a31, author = {Giulia Chiari and Giada Fiandaca and Marcello Edoardo Delitala}, title = {Hypoxia-resistance heterogeneity in tumours: the impact of geometrical characterization of environmental niches and evolutionary trade-offs. {A} mathematical approach}, journal = {Mathematical modelling of natural phenomena}, eid = {18}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023023}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023023/} }
TY - JOUR AU - Giulia Chiari AU - Giada Fiandaca AU - Marcello Edoardo Delitala TI - Hypoxia-resistance heterogeneity in tumours: the impact of geometrical characterization of environmental niches and evolutionary trade-offs. A mathematical approach JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023023/ DO - 10.1051/mmnp/2023023 LA - en ID - MMNP_2023_18_a31 ER -
%0 Journal Article %A Giulia Chiari %A Giada Fiandaca %A Marcello Edoardo Delitala %T Hypoxia-resistance heterogeneity in tumours: the impact of geometrical characterization of environmental niches and evolutionary trade-offs. A mathematical approach %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023023/ %R 10.1051/mmnp/2023023 %G en %F MMNP_2023_18_a31
Giulia Chiari; Giada Fiandaca; Marcello Edoardo Delitala. Hypoxia-resistance heterogeneity in tumours: the impact of geometrical characterization of environmental niches and evolutionary trade-offs. A mathematical approach. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 18. doi : 10.1051/mmnp/2023023. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023023/
[1] Life history trade-offs in cancer evolution Nat. Rev. Cancer 2013 883 892
, , , ,[2] L. Almeida, R.H. Chisholm, J. Clairambault, T. Lorenzi, A. Lorz, C. Pouchol and E. Trélat, Why is evolution important in cancer and what mathematics should be used to treat cancer? Focus on drug resistance. Trends Biomath. Model. Optim. Comput. Probl. (2018) 107–120.
[3] Pancreatic cancer: disease dynamics, tumor biology and the role of the microenvironment Oncotarget 2018 6644
, , , ,[4] A mathematical dissection of the adaptation of cell populations to fluctuating oxygen levels Bull. Math. Biol. 2020 1 24
, , , , ,[5] Mathematical modelling of the warburg effect in tumour cords J. Theoret. Biol. 2009 578 590
,[6] Classical mathematical models for description and prediction of experimental tumor growth PLoS Comput. Biol. 2014 e1003800
, , , , , ,[7] New insights into the role of phenotypic plasticity and emt in driving cancer progression Front. Mol. Biosci. 2020 71
, , ,[8] Exploiting tumour hypoxia in cancer treatment Nat. Rev. Cancer 2004 437 447
,[9] Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration Comptes Rendus Math. 2012 761 766
, , , , , ,[10] Life history trade-offs in tumors Curr. Pathobiol. Rep. 2018 201 207
, ,[11] Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation Biochim. Biophys. Acta (BBA) – Gen. Subj. 2016 2627 2645
, ,[12] Physiologically structured cell population dynamic models with applications to combined drug delivery optimisation in oncology Math. Model. Natural Phenomena 2016 45 70
,[13] Hypoxia-related radiotherapy resistance in tumours: treatment efficacy investigation in an eco-evolutionary perspective Front. Appl. Math. Stat. 2023 104063
, ,[14] A hybrid modeling environment to describe aggregates of cells heterogeneous for genotype and behavior with possible phenotypic transitions Int. J. Non-Linear Mech. 2022 104063
, , ,[15] Proposal of a hybrid approach for tumor progression and tumor-induced angiogenesis Theoret. Biol. Med. Model. 2015 1 22
, , , ,[16] The harsh microenvironment in early breast cancer selects for a warburg Phenotype Proc. Natl. Acad. Sci. U.S.A. 2021 e2011342118
, , , , , , , , ,[17] Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia Phys. Med. Biol. 2003 2829
, ,[18] The interplay of tradeoffs within the framework of a resource-based modelling Ecol. Model. 2018 249 260
, ,[19] W. Doerfler and P. Böhm, DNA methylation: development, genetic disease and cancer, Vol. 310. Springer Science Business Media (2006).
[20] Structured models of cell migration incorporating molecular binding processes J. Math. Biol. 2017 1517 1561
, , ,[21] Trait–fitness relationships determine how trade-off shapes affect species coexistence Ecology 2017 3188 3198
, ,[22] Cancer heterogeneity: implications for targeted therapeutics Br. J. cancer 2013 479 485
, ,[23] A mathematical study of the influence of hypoxia and acidity on the evolutionary dynamics of cancer Bull. Math. Biol. 2021 83
, ,[24] Decoding cancer heterogeneity: studying patient-specific signaling signatures towards personalized cancer therapy Theranostics 2019 5149
, , , ,[25] Self-regulation of growth in three dimensions J. Exp. Med. 1973 745 753
,[26] Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer Br. J. Cancer 2007 646 653
, , , , , , ,[27] Integrating evolutionary dynamics into cancer therapy Nat. Rev. Clin. Oncol. 2020 675 686
,[28] A. Ibrahim-Hashim, R.J. Gillies, J.S. Brown and R.A. Gatenby, Coevolution of tumor cells and their microenvironment: “niche construction in cancer”, in Ecology and Evolution of Cancer. Elsevier (2017) 111–117.
[29] On selection dynamics for competitive interactions J. Math. Biol. 2011 493 517
,[30] Turning ecology and evolution against cancer Nat. Rev. Cancer 2014 371 380
, ,[31] H.P. Langtangen and A. Logg, Solving PDEs in Python. Springer (2017).
[32] Optimal control for a mathematical model for chemotherapy with pharmacometrics Math. Model. Natural Phenomena 2020 69
, ,[33] Regulation of tumor progression by programmed necrosis Oxid. Med. Cell. Longev. 2018 1 28
, , , , , , , ,[34] Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations Biol. Direct 2016 1 17
, ,[35] Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull. Math. Biol. 2015 1 22
, , , ,[36] The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity J. Theor. Biol. 2018 101 110
, , ,[37] Classifying the evolutionary and ecological features of neoplasms Nat. Rev. Cancer 2017 605 619
, , ,[38] Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model and its therapeutic implications Bull. Math. Biol. 2012 2875 2896
, , ,[39] Analysis of tumour ecological balance reveals resource-dependent adaptive strategies of ovarian cancer EBioMedicine 2019 224 235
, , , , , ,[40] In vitro/in silico study on the role of doubling time heterogeneity among primary glioblastoma cell lines Biomed. Res. Int. 2017 1 12
, , , , ,[41] Tumor necrosis is a new promising prognostic factor in colorectal cancer Hum. Pathol. 2010 1749 1757
, , , , , ,[42] Role of hypoxia in the hallmarks of human cancer J. Cell. Biochem. 2009 1053 1062
, ,[43] Size-based differentiation of cancer and normal cells by a particle size analyzer assisted by a cell-recognition PC software Biol. Pharmaceut. Bull. 2018 487 503
, , , , , , , , , , ,[44] Mix and match: Phenotypic coexistence as a key facilitator of cancer invasion Bull. Math. Biol. 2020 1 26
, , , , ,[45] Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA 2021 394 424
, , , , , ,[46] Treatment resistance of solid tumors Med. Oncol. 2001 243 259
, ,[47] Modeling the emergence of phenotypic heterogeneity in vascularized tumors SIAM J. Appl. Math. 2021 434 453
, ,[48] Evolutionary dynamics in vascularised tumours under chemotherapy: mathematical modelling, asymptotic analysis and numerical simulations Vietnam J. Math. 2021 143 167
, ,Cité par Sources :