Mathematical modeling of leukemia chemotherapy in bone marrow
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 21.

Voir la notice de l'article provenant de la source EDP Sciences

Acute Lymphoblastic Leukemia (ALL) accounts for the 80% of leukemias when coming down to pediatric ages. Survival of these patients has increased by a considerable amount in recent years. However, around 15 20% of treatments are unsuccessful. For this reason, it is definitely required to come up with new strategies to study and select which patients are at higher risk of relapse. Thus the importance to monitor the amount of leukemic cells to predict relapses in the first treatment phase. In this work, we develop a mathematical model describing the behavior of ALL, examining the evolution of a leukemic clone when treatment is applied. In the study of this model it can be observed how the risk of relapse is connected with the response in the first treatment phase. This model is able to simulate cell dynamics without treatment, representing a virtual patient bone marrow behavior. Furthermore, several parameters are related to treatment dynamics, therefore proposing a basis for future works regarding childhood ALL survival improvement.
DOI : 10.1051/mmnp/2023022

Ana Niño-López 1, 2 ; Salvador Chulián 1, 2 ; Álvaro Martínez-Rubio 1, 2 ; Cristina Blázquez-Goñi 3 ; María Rosa 1, 2

1 Department of Mathematics, Universidad de Cádiz, Puerto Real, Cádiz, Spain
2 Biomedical Research and Innovation Institute of Cadiz (INiBICA) Hospital Universitario Puerta del Mar, Cádiz, Spain
3 Department of Pediatric Hematology and Oncology, Hospital Virgen del Rocío, Seville, Spain
@article{MMNP_2023_18_a32,
     author = {Ana Ni\~no-L\'opez and Salvador Chuli\'an and \'Alvaro Mart{\'\i}nez-Rubio and Cristina Bl\'azquez-Go\~ni and Mar{\'\i}a Rosa},
     title = {Mathematical modeling of leukemia chemotherapy in bone marrow},
     journal = {Mathematical modelling of natural phenomena},
     eid = {21},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023022/}
}
TY  - JOUR
AU  - Ana Niño-López
AU  - Salvador Chulián
AU  - Álvaro Martínez-Rubio
AU  - Cristina Blázquez-Goñi
AU  - María Rosa
TI  - Mathematical modeling of leukemia chemotherapy in bone marrow
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023022/
DO  - 10.1051/mmnp/2023022
LA  - en
ID  - MMNP_2023_18_a32
ER  - 
%0 Journal Article
%A Ana Niño-López
%A Salvador Chulián
%A Álvaro Martínez-Rubio
%A Cristina Blázquez-Goñi
%A María Rosa
%T Mathematical modeling of leukemia chemotherapy in bone marrow
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023022/
%R 10.1051/mmnp/2023022
%G en
%F MMNP_2023_18_a32
Ana Niño-López; Salvador Chulián; Álvaro Martínez-Rubio; Cristina Blázquez-Goñi; María Rosa. Mathematical modeling of leukemia chemotherapy in bone marrow. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 21. doi : 10.1051/mmnp/2023022. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023022/

[1] R. Acharya, M.K. Sundareshan Development of optimal drug administration strategies for cancer-chemotheraphy in the framework of systems theory Int. J. Biomed. Comput. 1984 139 150

[2] H. Amin, Y. Yang, Y. Shen, E. Estey, F. Giles, S. Pierce, H. Kantarjian, S. O’Brien, I. Jilani, M. Albitar Having a higher blast percentage in circulation than bone marrow: clinical implications in myelodysplastic syndrome and acute lymphoid and myeloid leukemias Leukemia 2005 1567 1572

[3] K. Anderson, C. Lutz, F.W. Van Delft, C.M. Bateman, Y. Guo, S.M. Colman, H. Kempski, A.V. Moorman, I. Titley, J. Swansbury Genetic variegation of clonal architecture and propagating cells in leukaemia Nature 2011 356 361

[4] P.M. Altrock, L.L. Liu, F. Michor The mathematics of cancer: integrating quantitative models Nat. Rev. Cancer 2015 730

[5] G.M. Armstrong, C.P. Midgley Applications: The exponential-decay law applied to medical dosages Math. Teacher 1987 110 13

[6] E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M.C. Pelleri, S. Tassani, F. Piva An estimation of the number of cells in the human body Ann. Human Biol. 2013 463 471

[7] J. Choi, S.J. Lee, Y.A. Lee, H.G. Maeng, J.K. Lee, Y.W. Kang Reference values for peripheral blood lymphocyte subsets in a healthy Korean population Immune Netw. 2014 289 295

[8] B. Asselin, C. Rizzari Asparaginase pharmacokinetics and implications of therapeutic drug monitoring Leukemia Lymphoma 2015 2273 2280

[9] F.M. Balis, J.S. Holcenberg, W.A. Bleyer Clinical pharmacokinetics of commonly used anticancer drugs Clin. Pharmacokinet. 1983 202 232

[10] D. Bhojwani, C.-H. Pui Relapsed childhood acute lymphoblastic leukaemia Lancet Oncol. 2013 e205 e217

[11] D. Bonnet, J.E. Dick Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nat. Med. 1997 730 737

[12] J.A. Bull and H.M. Byrne, The hallmarks of mathematical oncology. Proc. IEEE (2022).

[13] D. Campana Minimal residual disease in acute lymphoblastic leukemia, Hematology 2010 Am. Soc. Hematol. Educ. Program Book 2010 7 12

[14] G. Clapp, D. Levy A review of mathematical models for leukemia and lymphoma Drug Discov. Today Dis. Models 2015 1 6

[15] S. Chulián, A. Martínez-Rubio, A. Marciniak-Czochra, T. Stiehl, C. B. Goñi, J.F.R. Gutiérrez, M.R. Orellana, A.C. Robleda, V.M. Pérez-García, M. Rosa Dynamical properties of feedback signalling in b lymphopoiesis: a mathematical modelling approach J. Theor. Biol. 2021 110685

[16] D. Czock, F. Keller, F.M. Rasche, U. Häussler Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids Clin. Pharmacokinet. 2005 61 98

[17] Q. Dai, G. Zhang, H. Yang, Y. Wang, L. Ye, L. Peng, R. Shi, S. Guo, J. He and Y. Jiang, Clinical features and outcome of pediatric acute lymphoblastic leukemia with low peripheral blood blast cell count at diagnosis. Medicine 100 (2021).

[18] R.A. Egler, S.P. Ahuja, Y. Matloub L-asparaginase in the treatment of patients with acute lymphoblastic leukemia J. Pharmacol. Pharmacother. 2016 62

[19] R.A. Gatenby, P.K. Maini Mathematical oncology: cancer summed up Nature 2003 321 321

[20] D. Hanahan, R.A. Weinberg Hallmarks of cancer: the next generation Cell 2011 646 674

[21] G.B. Haycock, G.J. Schwartz, D.H. Wisotsky Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults J. Pediatr. 1978 62 66

[22] S.P. Hunger, X. Lu, M. Devidas, B.M. Camitta, P.S. Gaynon, N.J. Winick, G.H. Reaman, W.L. Carroll Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group J. Clin. Oncol. 2012 1663

[23] D. Jayachandran, A.E. Rundell, R.E. Hannemann, T.A. Vik, D. Ramkrishna Optimal chemotherapy for leukemia: a model-based strategy for individualized Treatment PLoS One 2014 e109623

[24] M. Karon, E.J. Freireich, E. Frei, R. Taylor, I.J. Wolman, I. Djerassi, S.L. Lee, A. Sawitsky, J. Hananian, O. Selawry The role of vincristine in the treatment of childhood acute leukemia Clin. Pharmacol. Ther. 1966 332 339

[25] K. Kay, I.M. Hastings Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs PLoS Comput. Biol. 2013 e1003151

[26] G.J. Kimmel, F.L. Locke, P.M. Altrock The roles of T cell competition and stochastic extinction events in chimeric antigen receptor T cell therapy Proc. Roy. Soc. B 2021 20210229

[27] N.L. Komarova Principles of regulation of self-renewing cell lineages PLoS One 2013 e72847

[28] T. Lorenzi, A. Marciniak-Czochra, T. Stiehl A structured population model of clonal selection in acute leukemias with multiple maturation stages J. Math. Biol. 2019 1587 1621

[29] H. Ma, H. Sun, X. Sun Survival improvement by decade of patients aged 0–14 years with acute lymphoblastic leukemia: a seer analysis Sci. Rep. 2014 1 7

[30] M.C. Mackey, R. Rudnicki Global stability in a delayed partial differential equation describing cellular replication J. Math. Biol. 1994 89 109

[31] A. Marciniak-Czochra, T. Stiehl, A.D. Ho, W. Jäger, W. Wagner Modeling of asymmetric cell division in hematopoietic stem cells regulation of self-renewal is essential for efficient repopulation Stem Cells Dev. 2009 377 386

[32] S. Mathur, J. Sutton Personalized medicine could transform healthcare Biomed. Rep. 2017 3 5

[33] Á. Martínez-Rubio, S. Chulián, C. Blázquez Goñi, M. Ramírez Orellana, A. Pérez Martínez, A. Navarro-Zapata, C. Ferreras, V.M. Pérez-García, M. Rosa A mathematical description of the bone marrow dynamics during CAR T-cell therapy in B-cell childhood acute lymphoblastic leukemia Int. J. Mol. Sci. 2021 6371

[34] M. Jagannathan-Bogdan, L.I. Zon Hematopoiesis Development 2013 2463 2467

[35] O. León-Triana, S. Sabir, G.F. Calvo, J. Belmonte-Beitia, S. Chulián, Á. Martínez-Rubio, M. Rosa, A. Pérez-Martínez, M. Ramirez-Orellana, V.M. Pérez-García CAR T cell therapy in B-cell acute lymphoblastic leukaemia: Insights from mathematical models Commun. Nonlinear Sci. Numer. Simul. 2021 105570

[36] O. Linderkamp, H. Versmold, K. Riegel, K. Betke Estimation and prediction of blood volume in infants and children Eur. J. Pediatr. 1977 227 234

[37] M. Mesegué, A. Alonso-Saladrigues, S. Pérez-Jaume, A. Comes-Escoda, J.L. Dapena, A. Faura, N. Conde, A. Catala, A. Ruiz-Llobet, E. Zapico-Muñiz Lower incidence of clinical allergy with peg-asparaginase upfront versus the sequential use of native E. coli asparaginase followed by peg-asp in pediatric patients with acute lymphoblastic leukemia Hematol. Oncol. 2021 687 696

[38] A. Möricke, M. Zimmermann, A. Reiter, H. Gadner, E. Odenwald, J. Harbott, W.-D. Ludwig, H. Riehma, M. Schrappe Prognostic impact of age in children and adolescents with acute lymphoblastic leukemia: data from the trials all-bfm 86, 90, and 95 Klin. Pädiatr. 2005 310 320

[39] C.L. Mouser, E.S. Antoniou, J. Tadros, E.K. Vassiliou A model of hematopoietic stem cell proliferation under the influence of a chemotherapeutic agent in combination with a hematopoietic inducing agent Theor. Biol. Med. Model. 2014 1 14

[40] O. Nave, A new protocol applied to cancer treatment-mathematical model-singular perturbed vector field algorithm (2022).

[41] S.H. Orkin, L.I. Zon Hematopoiesis: an evolving paradigm for stem cell Biology Cell 2008 631 644

[42] E. Pefani, N. Panoskaltsis, A. Mantalaris, M.C. Georgiadis, E.N. Pistikopoulos Chemotherapy drug scheduling for the induction treatment of patients with acute myeloid leukemia IEEE Trans. Biomed. Eng. 2014 2049 2056

[43] V.M. Pérez-García, O. León-Triana, M. Rosa, A. Pérez-Martínez CAR T cells for T-cell leukemias: Insights from mathematical models Commun. Nonlinear Sci. Numer. Simul. 2021 105684

[44] C.-H. Pui, D. Campana, W.E. Evans Childhood acute lymphoblastic leukaemia–current status and future perspectives Lancet Oncol. 2001 597 607

[45] C.-H. Pui, L.L. Robison and A.T. Look, Acute lymphoblastic leukaemia. Lancet 371 (2008).

[46] C.-H. Pui, W.E. Evans Treatment of acute lymphoblastic leukemia N. Engl. J. Med. 2006 166 178

[47] M. Qweider, J.M. Gilsbach, V. Rohde Inadvertent intrathecal vincristine administration: a neurosurgical emergency: case report J. Neurosurg. Spine 2007 280 283

[48] A. Raes, S. Van Aken, M. Craen, R. Donckerwolcke, J.V. Walle A reference frame for blood volume in children and adolescents BMC Pediatr. 2006 1 8

[49] M. Ronghe, G. Burke, S. Lowis, E. Estlin Remission induction therapy for childhood acute lymphoblastic leukaemia: clinical and cellular pharmacology of vincristine, corticosteroids, l-asparaginase and anthracyclines Cancer Treatm. Rev. 2001 327 337

[50] S. Rubinow, J. Lebowitz A mathematical model of the chemotherapeutic treatment of acute myeloblastic leukemia Biophys. J. 1976 1257 1271

[51] A. Ruiz-Llobet, S. Gassiot, E. Sarrate, J. Zubicaray, J.L. Dapena, S. Rives, J. Sevilla, Á. Menáirguez López, M. Panesso Romero, C. Montoya, et al., Venous thromboembolism in pediatric patients with acute lymphoblastic leukemia under chemotherapy treatment. risk factors and usefulness of thromboprophylaxis. Results of lal-sehop-pethema-2013. J. Thromb. Haemost. (2022).

[52] T. Szczepański Why and how to quantify minimal residual disease in acute lymphoblastic leukemia? Leukemia 2007 622 626

[53] T. Stiehl, A. Marciniak-Czochra Characterization of stem cells using mathematical models of multistage cell lineages Math. Comput. Model. 2011 1505 1517

[54] T. Terwillige, M. Abdul-Hay Acute lymphoblastic leukemia: a comprehensive review and 2017 update Blood Cancer J. 2017 e577 e577

[55] Z.J. Ward, J.M. Yeh, N. Bhakta, A.L. Frazier, R. Atun Estimating the total incidence of global childhood cancer: a simulation-based analysis Lancet Oncol. 2019 483 493

[56] E.G. Van Lochem, V.H.J. Van Der Velden, H.K. Wind, J.G. Te Marvelde, N.A.C. Westerdaal, J.J.M. Van Dongen Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts Cytometry B: Clin. Cytom. 2004 1 13

Cité par Sources :