Heat and mass diffusion to williamson fluid streaming through a tube with multiple stenoses while subjected to periodic body acceleration
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 19.

Voir la notice de l'article provenant de la source EDP Sciences

This article examines a mathematical framework that describes the versatile behavior of heat and mass exchange in blood flowing through a narrowed vessel having multiple stenoses. The geometry of a channel having multiple stenoses with an asymmetrical axial axis and a symmetrical radial axis can be visualized by applying a suitable mathematical expression. The geometry of the chosen model considers the height and shape of stenoses. The modification in shape parameter is used to capture variations in the shape of the stenoses in the artery. The blood is supposed to be isochoric (incompressible), while its rheological behavior is characterized by Williamson’s fluid model. The transfer of momentum is analyzed using the equation of motion in cooperation with the continuity equation. In addition, the equations of heat conduction and diffusion are utilized, respectively, to illustrate the distributions of heat and mass. Simplified forms of momentum, mass, and heat transport equations are achieved by incorporating dimensionless quantities and moderate stenosis conditions. A well-known explicit finite difference approach is utilized to solve the emergent non-linear system of governing equations numerically. The influence of different evolving parameters on the flow field along with mass and heat distributions is illustrated through various plots.
DOI : 10.1051/mmnp/2023021

Muhammad Fahim 1 ; Muhammad Sajid 1 ; Nasir Ali 1 ; Muhammad Noveel Sadiq 1

1 Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan
@article{MMNP_2023_18_a36,
     author = {Muhammad Fahim and Muhammad Sajid and Nasir Ali and Muhammad Noveel Sadiq},
     title = {Heat and mass diffusion to williamson fluid streaming through a tube with multiple stenoses while subjected to periodic body acceleration},
     journal = {Mathematical modelling of natural phenomena},
     eid = {19},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023021/}
}
TY  - JOUR
AU  - Muhammad Fahim
AU  - Muhammad Sajid
AU  - Nasir Ali
AU  - Muhammad Noveel Sadiq
TI  - Heat and mass diffusion to williamson fluid streaming through a tube with multiple stenoses while subjected to periodic body acceleration
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023021/
DO  - 10.1051/mmnp/2023021
LA  - en
ID  - MMNP_2023_18_a36
ER  - 
%0 Journal Article
%A Muhammad Fahim
%A Muhammad Sajid
%A Nasir Ali
%A Muhammad Noveel Sadiq
%T Heat and mass diffusion to williamson fluid streaming through a tube with multiple stenoses while subjected to periodic body acceleration
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023021/
%R 10.1051/mmnp/2023021
%G en
%F MMNP_2023_18_a36
Muhammad Fahim; Muhammad Sajid; Nasir Ali; Muhammad Noveel Sadiq. Heat and mass diffusion to williamson fluid streaming through a tube with multiple stenoses while subjected to periodic body acceleration. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 19. doi : 10.1051/mmnp/2023021. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023021/

[1] O.A. Abegunrin and I. Lare Animasaun, Motion of Williamson fluid over an upper horizontal surface of a paraboloid of revolution due to partial slip and buoyancy: boundary layer analysis, in Defect and Diffusion Forum. Vol. 378. Trans Tech Publications Ltd (2017).

[2] C.H. Amanulla, N. Nagendra, R.A. Subba, O.A. Bég, A. Kadir Numerical exploration of thermal radiation and Biot number effects on the flow of a non-Newtonian MHD Williamson fluid over a vertical convective surface Heat Transfer—Asian Res. 2018 286 304

[3] N. Ahamad, N. Ameer, S. Kamangar, I. Anjum Badruddin The influence of curvature wall on the blood flow in stenosed artery: a computational study Bio-med. Mater. Eng. 2018 319 332

[4] R.D. Alsemiry, P.K. Mandal, H.M. Sayed and N. Amin, Numerical solution of blood flow and mass transport in an elastic tube with multiple stenoses. BioMed. Res. Int. bf 2020 (2020).

[5] N. Ali, A. Zaman, M. Sajid, J.J. Nieto Unsteady non-Newtonian blood flow through a tapered overlapping stenosed catheterized vessel Math. Biosci. 2015 94 103

[6] T. Azuma, T. Fukushima Flow patterns in stenotic blood vessel models Biorheology 1976 337 355

[7] L.H. Back, J.R. Radbill, D.W. Crawford Analysis of oxygen transport from pulsatile, viscous blood flow to diseased coronary arteries of man J. Biomech. 1977 763 774

[8] S. Chakravarty, S. Sen Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries Korea-Australia Rheol. J. 2005 47 62

[9] C.G. Caro, J.M. Fitz-Gerald, R.C. Schroter Atheroma and arterial wall shear-observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 1971 109 133

[10] J.C.F. Chow, K. Soda Laminar flow and blood oxygenation in channels with boundary irregularities J. Appl. Mech. 1973 843 850

[11] R.L. Feldman, W.W. Nichols, C.J. Pepine, C.R. Conti Hemodynamic effects of long and multiple coronary arterial narrowings Chest 1978 280 285

[12] R.L. Feldman, W.W. Nichols, C.J. Pepine, D.A. Conetta, C.R. Conti The coronary hemodynamics of left main and branch coronary stenoses: the effects of reduction in stenosis diameter, stenosis length, and number of stenoses J. Thorac. Cardiovasc. Surg. 1979 377 388

[13] J.H. Forrester, D.F. Young Flow through a converging-diverging tube and its implications in occlusive vascular disease—I: Theoretical development J. Biomech. 1970 297 305

[14] Z. Ismail, I. Abdullah, N. Mutapha, N. Amin A power-law model of blood flow through a tapered overlapping stenosed artery Appl. Math. Comput. 2008 669 680

[15] W. Ibrahim and M. Negera, The investigation of MHD Williamson nanofluid over stretching cylinder with the effect of activation energy. Adv. Math. Phys. 2020 (2020).

[16] W. Iqbal, M.N. Naeem, M. Jalil Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder AIP Adv. 2019 055118

[17] P.E. Karayannacos, N. Talukder, R.M. Nerem, S. Roshan, J.S. Vasko The role of multiple noncritical arterial stenoses in the pathogenesis of ischemia J. Thorac. Cardiovasc. Surg. 1977 458 469

[18] T. Kebede, E. Haile, G. Awgichew and T. Walelign, Heat and mass transfer in unsteady boundary layer flow of Williamson nanofluids. J. Appl. Math. 2020 (2020).

[19] K.A. Kumar, J.R. Reddy, V. Sugunamma and N. Sandeep, Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with nonuniform heat source/sink. Heat Transfer Res. 50 (2019).

[20] D. Kilpatrick, S.D. Webber, J.P. Colle The vascular resistance of arterial stenoses in series Angiology 1990 278 285

[21] P.K. Mandal An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis Int. J. Non-linear Mech. 2005 151 164

[22] D.A. Macdonald On steady flow through modelled vascular stenoses J. Biomech. 1979 13 20

[23] J.C. Misra, A. Sinha, G.C. Shit Mathematical modeling of blood flow in a porous vessel having double stenoses in the presence of an external magnetic field Int. J. Biomathe. 2011 207 225

[24] N. Mustapha, S. Chakravarty, P.K. Mandal, N. Amin Unsteady response of blood flow through a couple of irregular arterial constrictions to body acceleration J. Mech. Med. Biol. 2008 395 420

[25] N. Mustapha, P.K. Mandal, I. Abdullah, N. Namin, T. Hayat Numerical simulation of generalized newtonian blood flow past a couple of irregular arterial stenoses Numer. Methods Part. Diff. Eq. 2011 960 981

[26] S. Nadeem, S. Ashiq and M. Ali, Williamson fluid model for the peristaltic flow of chyme in small intestine. Math. Probl. Eng. 2012 (2012).

[27] P. Nagarani, G. Sarojamma Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery Korea-Australia Rheol. J. 2008 189 196

[28] P. Owasit, S. Sriyab Mathematical modeling of non-Newtonian fluid in arterial blood flow through various stenoses Adv. Diff. Eq. 2021 1 20

[29] A. Ogulu, T.M. Abbey Simulation of heat transfer on an oscillatory blood flow in an indented porous artery Int. Commun. Heat Mass Transfer 2005 983 989

[30] K. Perktold, R. Peter, M. Resch Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm Biorheology 1989 1011 1030

[31] M.G. Rabby, S.P. Shupti and Md. Molla, Pulsatile non-newtonian laminar blood flows through arterial double stenoses. J. Fluids 2014 (2014).

[32] D.S. Sankar, U. Lee Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries Commun. Nonlinear Sci. Numer. Simul. 2009 2971 2981

[33] A. Shafiq, A.B. Colak, T.N. Sindhu, Q.M. Al-Mdallal, T. Abdeljawad Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling Sci. Rep. 2021 1 21

[34] H. Shahzad, X. Wang, I. Sarris, K. Iqbal, M.B. Hafeez, M. Krawczuk Study of Non-Newtonian biomagnetic blood flow in a stenosed bifurcated artery having elastic walls Sci. Rep. 2021 1 13

[35] K. Subbarayudu, S. Suneetha, P. Bala Anki Reddy The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge Propuls. Power Res. 2020 87 99

[36] N. Talukder, P.E. Karayanncos, R.M. Nerem, J.S. Vasko An experimental study of the fluid dynamics of multiple noncritical stenoses J. Biomech. Eng. 1977 74 82

[37] K. Vajravelu, S. Sreenandh, K. Rajanikanth, C. Lee Peristaltic transport of a Williamson fluid in asymmetric channels with permeable walls Nonlinear Anal. Real World Appl. 2012 2804 2822

[38] S.A. Victor, V.L. Shah Heat transfer to blood flowing in a tube Biorheology 1975 361 368

[39] S.A. Victor, V.L. Shah Steady state heat transfer to blood flowing in the entrance region of a tube Int. J. Heat Mass Transfer 1976 777 783

[40] V.K. Verma, P. Saraswat Effect of a multiple stenosis on blood flow through a tube Int. J. Biomed. Biol. Eng. 2014 753 756

[41] R.Vo. Williamson The flow of pseudoplastic materials Ind. Eng. Chem. 1929 1108 1111

[42] D.F. Young Effect of a time-dependent stenosis on flow through a tube J. Eng. Ind. 1968 248 254

[43] W. Yoncheareon, D. Young Initiation of turbulence in models of arterial stenosis J. Biomech. 1979 185 196

[44] A. Zaman, N. Ali, M. Sajid Slip effects on unsteady non-Newtonian blood flow through an inclined catheterized overlapping stenotic artery AIP Adv. 2016 015118

[45] A. Zaman, N. Ali, O.A. Bég, M. Sajid Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery Int. J. Heat Mass Transfer 2016 1084 1095

Cité par Sources :