Voir la notice de l'article provenant de la source EDP Sciences
Muhammad Fahim 1 ; Muhammad Sajid 1 ; Nasir Ali 1 ; Muhammad Noveel Sadiq 1
@article{MMNP_2023_18_a36, author = {Muhammad Fahim and Muhammad Sajid and Nasir Ali and Muhammad Noveel Sadiq}, title = {Heat and mass diffusion to williamson fluid streaming through a tube with multiple stenoses while subjected to periodic body acceleration}, journal = {Mathematical modelling of natural phenomena}, eid = {19}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023021}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023021/} }
TY - JOUR AU - Muhammad Fahim AU - Muhammad Sajid AU - Nasir Ali AU - Muhammad Noveel Sadiq TI - Heat and mass diffusion to williamson fluid streaming through a tube with multiple stenoses while subjected to periodic body acceleration JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023021/ DO - 10.1051/mmnp/2023021 LA - en ID - MMNP_2023_18_a36 ER -
%0 Journal Article %A Muhammad Fahim %A Muhammad Sajid %A Nasir Ali %A Muhammad Noveel Sadiq %T Heat and mass diffusion to williamson fluid streaming through a tube with multiple stenoses while subjected to periodic body acceleration %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023021/ %R 10.1051/mmnp/2023021 %G en %F MMNP_2023_18_a36
Muhammad Fahim; Muhammad Sajid; Nasir Ali; Muhammad Noveel Sadiq. Heat and mass diffusion to williamson fluid streaming through a tube with multiple stenoses while subjected to periodic body acceleration. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 19. doi : 10.1051/mmnp/2023021. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023021/
[1] O.A. Abegunrin and I. Lare Animasaun, Motion of Williamson fluid over an upper horizontal surface of a paraboloid of revolution due to partial slip and buoyancy: boundary layer analysis, in Defect and Diffusion Forum. Vol. 378. Trans Tech Publications Ltd (2017).
[2] Numerical exploration of thermal radiation and Biot number effects on the flow of a non-Newtonian MHD Williamson fluid over a vertical convective surface Heat Transfer—Asian Res. 2018 286 304
, , , ,[3] The influence of curvature wall on the blood flow in stenosed artery: a computational study Bio-med. Mater. Eng. 2018 319 332
, , ,[4] R.D. Alsemiry, P.K. Mandal, H.M. Sayed and N. Amin, Numerical solution of blood flow and mass transport in an elastic tube with multiple stenoses. BioMed. Res. Int. bf 2020 (2020).
[5] Unsteady non-Newtonian blood flow through a tapered overlapping stenosed catheterized vessel Math. Biosci. 2015 94 103
, , ,[6] Flow patterns in stenotic blood vessel models Biorheology 1976 337 355
,[7] Analysis of oxygen transport from pulsatile, viscous blood flow to diseased coronary arteries of man J. Biomech. 1977 763 774
, ,[8] Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries Korea-Australia Rheol. J. 2005 47 62
,[9] Atheroma and arterial wall shear-observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 1971 109 133
, ,[10] Laminar flow and blood oxygenation in channels with boundary irregularities J. Appl. Mech. 1973 843 850
,[11] Hemodynamic effects of long and multiple coronary arterial narrowings Chest 1978 280 285
, , ,[12] The coronary hemodynamics of left main and branch coronary stenoses: the effects of reduction in stenosis diameter, stenosis length, and number of stenoses J. Thorac. Cardiovasc. Surg. 1979 377 388
, , , ,[13] Flow through a converging-diverging tube and its implications in occlusive vascular disease—I: Theoretical development J. Biomech. 1970 297 305
,[14] A power-law model of blood flow through a tapered overlapping stenosed artery Appl. Math. Comput. 2008 669 680
, , ,[15] W. Ibrahim and M. Negera, The investigation of MHD Williamson nanofluid over stretching cylinder with the effect of activation energy. Adv. Math. Phys. 2020 (2020).
[16] Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder AIP Adv. 2019 055118
, ,[17] The role of multiple noncritical arterial stenoses in the pathogenesis of ischemia J. Thorac. Cardiovasc. Surg. 1977 458 469
, , , ,[18] T. Kebede, E. Haile, G. Awgichew and T. Walelign, Heat and mass transfer in unsteady boundary layer flow of Williamson nanofluids. J. Appl. Math. 2020 (2020).
[19] K.A. Kumar, J.R. Reddy, V. Sugunamma and N. Sandeep, Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with nonuniform heat source/sink. Heat Transfer Res. 50 (2019).
[20] The vascular resistance of arterial stenoses in series Angiology 1990 278 285
, ,[21] An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis Int. J. Non-linear Mech. 2005 151 164
[22] On steady flow through modelled vascular stenoses J. Biomech. 1979 13 20
[23] Mathematical modeling of blood flow in a porous vessel having double stenoses in the presence of an external magnetic field Int. J. Biomathe. 2011 207 225
, ,[24] Unsteady response of blood flow through a couple of irregular arterial constrictions to body acceleration J. Mech. Med. Biol. 2008 395 420
, , ,[25] Numerical simulation of generalized newtonian blood flow past a couple of irregular arterial stenoses Numer. Methods Part. Diff. Eq. 2011 960 981
, , , ,[26] S. Nadeem, S. Ashiq and M. Ali, Williamson fluid model for the peristaltic flow of chyme in small intestine. Math. Probl. Eng. 2012 (2012).
[27] Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery Korea-Australia Rheol. J. 2008 189 196
,[28] Mathematical modeling of non-Newtonian fluid in arterial blood flow through various stenoses Adv. Diff. Eq. 2021 1 20
,[29] Simulation of heat transfer on an oscillatory blood flow in an indented porous artery Int. Commun. Heat Mass Transfer 2005 983 989
,[30] Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm Biorheology 1989 1011 1030
, ,[31] M.G. Rabby, S.P. Shupti and Md. Molla, Pulsatile non-newtonian laminar blood flows through arterial double stenoses. J. Fluids 2014 (2014).
[32] Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries Commun. Nonlinear Sci. Numer. Simul. 2009 2971 2981
,[33] Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling Sci. Rep. 2021 1 21
, , , ,[34] Study of Non-Newtonian biomagnetic blood flow in a stenosed bifurcated artery having elastic walls Sci. Rep. 2021 1 13
, , , , ,[35] The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge Propuls. Power Res. 2020 87 99
, ,[36] An experimental study of the fluid dynamics of multiple noncritical stenoses J. Biomech. Eng. 1977 74 82
, , ,[37] Peristaltic transport of a Williamson fluid in asymmetric channels with permeable walls Nonlinear Anal. Real World Appl. 2012 2804 2822
, , ,[38] Heat transfer to blood flowing in a tube Biorheology 1975 361 368
,[39] Steady state heat transfer to blood flowing in the entrance region of a tube Int. J. Heat Mass Transfer 1976 777 783
,[40] Effect of a multiple stenosis on blood flow through a tube Int. J. Biomed. Biol. Eng. 2014 753 756
,[41] The flow of pseudoplastic materials Ind. Eng. Chem. 1929 1108 1111
[42] Effect of a time-dependent stenosis on flow through a tube J. Eng. Ind. 1968 248 254
[43] Initiation of turbulence in models of arterial stenosis J. Biomech. 1979 185 196
,[44] Slip effects on unsteady non-Newtonian blood flow through an inclined catheterized overlapping stenotic artery AIP Adv. 2016 015118
, ,[45] Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery Int. J. Heat Mass Transfer 2016 1084 1095
, , ,Cité par Sources :