Within-host evolutionary dynamics of antimicrobial quantitative resistance
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 24.

Voir la notice de l'article provenant de la source EDP Sciences

Antimicrobial efficacy is traditionally described by a single value, the minimal inhibitory concentration (MIC), which is the lowest concentration that prevents visible growth of the bacterial population. As a consequence, bacteria are classically qualitatively categorized as resistant if therapeutic concentrations are below MIC and susceptible otherwise. However, there is a continuity in the space of the bacterial resistance levels. Here, we introduce a model of within-host evolution of resistance under treatment that considers resistance as a continuous quantitative trait, describing the level of resistance of the bacterial population. The use of intcgro-differential equations allows to simultaneously track the dynamics of the bacterial population density and the evolution of its level of resistance. We analyze this model to characterize the conditions; in terms of (a) the efficiency of the drug measured by the antimicrobial activity relatively to the host immune response, and (b) the cost-benefit of resistance; that (i) prevents bacterial growth to make the patient healthy, and (ii) ensures the emergence of a bacterial population with a minimal level of resistance in case of treatment failure. We investigate how chemotherapy (i.e., drug treatment) impacts bacterial population structure at equilibrium, focusing on the level of evolved resistance by the bacterial population in presence of antimicrobial pressure. We show that this level is explained by the reproduction number R0. We also explore the impact of the initial bacterial population size and their average resistance level on the minimal duration of drug administration in preventing bacterial growth and the emergence of resistant bacterial population.
DOI : 10.1051/mmnp/2023019

Ramsès Djidjou-Demasse 1, 2 ; Mircea T. Sofonea 1, 2 ; Marc Choisy 3, 4 ; Samuel Alizon 1

1 MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
2 These authors contributed equally to this work
3 Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
4 Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
@article{MMNP_2023_18_a22,
     author = {Rams\`es Djidjou-Demasse and Mircea T. Sofonea and Marc Choisy and Samuel Alizon},
     title = {Within-host evolutionary dynamics of antimicrobial quantitative resistance},
     journal = {Mathematical modelling of natural phenomena},
     eid = {24},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023019/}
}
TY  - JOUR
AU  - Ramsès Djidjou-Demasse
AU  - Mircea T. Sofonea
AU  - Marc Choisy
AU  - Samuel Alizon
TI  - Within-host evolutionary dynamics of antimicrobial quantitative resistance
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023019/
DO  - 10.1051/mmnp/2023019
LA  - en
ID  - MMNP_2023_18_a22
ER  - 
%0 Journal Article
%A Ramsès Djidjou-Demasse
%A Mircea T. Sofonea
%A Marc Choisy
%A Samuel Alizon
%T Within-host evolutionary dynamics of antimicrobial quantitative resistance
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023019/
%R 10.1051/mmnp/2023019
%G en
%F MMNP_2023_18_a22
Ramsès Djidjou-Demasse; Mircea T. Sofonea; Marc Choisy; Samuel Alizon. Within-host evolutionary dynamics of antimicrobial quantitative resistance. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 24. doi : 10.1051/mmnp/2023019. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023019/

[1] S. Alizon, F. Luciani, R.R. Regoes Epidemiological and clinical consequences of within-host evolution Trends Microbiol. 2011 24 32

[2] C.F. Amabile-Cuevas, Antibiotics and Antibiotic Resistance in the Environment. CRC Press (2015).

[3] R.M. Anderson Populations and infectious diseases: ecology or epidemiology? J. Anim. Ecol. 1991 1 50

[4] F. Blanquart Evolutionary epidemiology models to predict the dynamics of antibiotic resistance Evol. Appl. 2019 365 383

[5] R. Bürger Perturbations of positive semigroups and applications to population genetics Math. Z. 1988 259 272

[6] J.B. Burie, R. Djidjou-Demasse, A. Ducrot Asymptotic and transient behaviour for a nonlocal problem arising in population genetics Eur. J. Appl. Math. 2020 84 110

[7] F. Clarelli, A. Palmer, B. Singh, M. Storflor, S. Lauksund, T. Cohen Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones PLoS Comput. Biol. 2020 e1008106

[8] J. Coville Maximum principles, sliding techniques and applications to nonlocal equations Electron. J. Diff. Equ. 2007 23

[9] E.M.C. D’Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier, S. Ruan The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria PLoS One 2008 e4036

[10] T. Day, A.F. Read Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Computat. Biol. 2016 e1004689

[11] W. Demczuk, I. Martin, P. Sawatzky, V. Allen, B. Lefebvre, L. Hoang, et al., Equations to predict antimicrobial MICs in Neisseria gonorrhoeae using molecular antimicrobial resistance determinants. Antimicrob. Agents Chemother. 64 (2020).

[12] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol. 1990 365 382

[13] O. Diekmann, P.E. Jabin, S. Mischler, B. Perthame The dynamics of adaptation: an illuminating example and a Hamilton- Jacobi approach Theoret. Popul. Biol. 2005 257 271

[14] R. Djidjou-Demasse, S. Alizon, M.T. Sofonea Within-host bacterial growth dynamics with both mutation and horizontal gene transfer J. Math. Biol. 2021 16

[15] R. Djidjou-Demasse, A. Ducrot, F. Fabre Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens Math. Models Methods Appl. Sci. 2017 231 290

[16] R. Djidjou-Demasse, Antimicrobial-Quantitative-Resistance-v1 (2021). http://doi.org/10.5281/zenodo.5508202

[17] G.L. Drusano, W. Liu, D.L. Brown, L.B. Rice, A. Louie Impact of short-course quinolone therapy on susceptible and resistant populations of Staphylococcus taureus J. Infect. Dis. 2009 219 226

[18] EUCAST: Clinical Breakpoints and Dosing of Antibiotics (2023). https://www.eucast.org/clinicaLbreakpoints/.

[19] S. Gagneux The competitive cost of antibiotic resistance in Mycobacterium tuberculosis Science 2006 1944 1946

[20] P. Geli, R. Laxminarayan, M. Dunne, D.L. Smith “One-size-fits-all”? Optimizing treatment duration for bacterial infections PLoS ONE 2012 e29838

[21] S.A.H. Geritz, J.A.J. Metz, É Kisdi, G. Meszéna Dynamics of adaptation and evolutionary branching Phys. Rev. Lett. 1997 2024 2027

[22] E. Gjini, P.H. Brito Integrating antimicrobial therapy with host immunity to fight drug-resistant infections: classical vs. adaptive treatment PLoS Comput. Biol. 2016 e1004857

[23] H. Goossens, M. Ferech, R. Vander Stichele, M. Elseviers Outpatient Antibiotic use in Europe and association with resistance: a cross-national database study Lancet 2005 579 587

[24] J.K. Hale, Asymptotic Behavior of Dissipative Systems. American Mathematical Society (1988).

[25] A. Handel, E. Margolis, B.R. Levin Exploring the role of the immune response in preventing antibiotic resistance J. Theor. Biol. 2009 655 662

[26] E. Hansen, R.J. Woods, A.F. Read How to use a chemotherapeutic agent when resistance to it threatens the patient PLoS Biol. 2017 e2001110

[27] T.B. Kepler, A.S. Perelson Drug Concentration heterogeneity facilitates the evolution of drug resistance Proc. Natl. Acad. Sci. U.S.A. 1998 11514 11519

[28] R.D. Kouyos, C.J.E. Metcalf, R. Birger, E.Y. Klein, P. Abel Zur Wiesch, P. Ankomah The path of least resistance: aggressive or moderate treatment? Proc. Roy. Soc. B: Biol. Sci. 2014 20140566

[29] A. Lange, N.M. Ferguson Antigenic diversity, transmission mechanisms, and the evolution of pathogens PLoS Comput. Biol. 2009 e1000536

[30] H.H. Lee, M.N. Molla, C.R. Cantor, J.J. Collins Bacterial charity work leads to population-wide resistance Nature 2010 82 85

[31] M. Levert, O. Zamfir, O. Clermont, O. Bouvet, S. Lespinats, M.C. Hipeaux Molecular and evolutionary bases of within-patient genotypic and phenotypic diversity in Escherichia coli extraintestinal infections PLoS Pathogens 2010 e1001125

[32] S. Lion, J.A.J. Metz Beyond R0 maximisation: on pathogen evolution and environmental dimensions Trends Ecol. Evol. 2018 458 473

[33] M. Lipsitch, B.R. Levin The population dynamics of antimicrobial chemotherapy Antimicrob. Agents Chemother. 1997 363 373

[34] L. Loewe High deleterious genomic mutation rate in stationary phase of Escherichia coli Science 2003 1558 1560

[35] A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull. Math. Biol. 2015 1 22

[36] F. Luciani and S. Alizon, The evolutionary dynamics of a rapidly mutating virus within and between hosts: the case of hepatitis C virus. PLoS Comput. Biol. 5 (2009).

[37] M.N. Martinez, M.G. Papich, G.L. Drusano Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target Antimicrob. Agents Chemother. 2012 2795 2805

[38] J.A.J. Metz, S.A.H. Geritz, G. Meszena, F.J.A. Jacobs and J.S. van Heerwaarden, Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction [monograph] (1995).

[39] J.A.J. Metz, S.D. Mylius, O. Diekmann When does evolution optimize? Evol. Ecol. Res. 2008 629 654

[40] P. Meyer-Nieberg, Banach Lattices. Universitext. Springer-Verlag, Berlin, Heidelberg (1991).

[41] N. Mideo, S. Alizon, T. Day Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases Trends Ecol. Evol. 2008 511 517

[42] A.S. Millan, R. Peña-Miller, M. Toll-Riera, Z.V. Halbert, A.R. Mclean, B.S. Cooper Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids Nat. Commun. 2014 5208

[43] J.W. Mouton, P.G. Ambrose, R. Canton, G.L. Drusano, S. Harbarth, A. Macgowan Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective Drug Resist. Updates 2011 107 117

[44] S.D. Mylius, O. Diekmann On evolutionarily stable life histories, optimization and the need to be specific about density dependence Oikos 1995 218 224

[45] Q.H. Nguyen, L. Contamin, T.V.A. Nguyen, A.L. Bañuls Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis Evol. Appl. 2018 1498 1511

[46] T.T. Nguyen, J. Guedj, E. Chachaty, J. De Gunzburg, A. Andremont, F. Mentré Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant Enterobacteria excreted PLoS Comput. Biol. 2014 e1003840

[47] S.K. Olofsson, O. Cars Optimizing drug exposure to minimize selection of antibiotic resistance Clin. Infect. Dis. 2007 S129 S136

[48] S.R. Palumbi Humans as the world’s greatest evolutionary force Science 2001 1786 1790

[49] A. Pazy Semigroups of linear operators and applications to partial differential equations 1983 VIII 279

[50] A.F. Read, T. Day, S. Huijben The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy Proc. Natl. Acad. Sci. U.S.A. 2011 10871 10877

[51] M.F. Schenk, I.G. Szendro, J. Krug, J.A.G.M. De Visser Quantifying the adaptive potential of an antibiotic resistance enzyme PLoS Genet. 2012 e1002783

[52] P. Schulz Zur Wiesch, J. Engelstadter, S. Bonhoeffer Compensation of fitness costs and reversibility of antibiotic resistance mutations Antimicrob. Agents Chemother. 2010 2085 2095

[53] P. Sniegowski Evolution: bacterial mutation in stationary phase Curr. Biol. 2004 R245 R246

[54] F. Svara, D.J. Rankin The evolution of plasmid-carried antibiotic resistance BMC Evol. Biol. 2011 130

[55] S.J. Tazzyman, S. Bonhoeffer Plasmids and evolutionary rescue by drug resistance Evolution 2014 2066 2078

[56] H.R. Thieme, Mathematics in Population Biology. Princeton University Press (2003).

[57] G.F. Webb Compactness of bounded trajectories of dynamical systems in infinite dimensional spaces Proc. Roy. Soc. Edinb. A: Math. 1979 19 33

[58] P.A. Zur Wiesch, R. Kouyos, J. Engelstädter, R.R. Regoes, S. Bonhoeffer Population biological principles of drug-resistance evolution in infectious diseases Lancet Infect. Dis. 2011 236 247

Cité par Sources :