Ramsès Djidjou-Demasse  1 , 2 ; Mircea T. Sofonea  1 , 2 ; Marc Choisy  3 , 4 ; Samuel Alizon  1
@article{10_1051_mmnp_2023019,
author = {Rams\`es Djidjou-Demasse and Mircea T. Sofonea and Marc Choisy and Samuel Alizon},
title = {Within-host evolutionary dynamics of antimicrobial quantitative resistance},
journal = {Mathematical modelling of natural phenomena},
eid = {24},
year = {2023},
volume = {18},
doi = {10.1051/mmnp/2023019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023019/}
}
TY - JOUR AU - Ramsès Djidjou-Demasse AU - Mircea T. Sofonea AU - Marc Choisy AU - Samuel Alizon TI - Within-host evolutionary dynamics of antimicrobial quantitative resistance JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023019/ DO - 10.1051/mmnp/2023019 LA - en ID - 10_1051_mmnp_2023019 ER -
%0 Journal Article %A Ramsès Djidjou-Demasse %A Mircea T. Sofonea %A Marc Choisy %A Samuel Alizon %T Within-host evolutionary dynamics of antimicrobial quantitative resistance %J Mathematical modelling of natural phenomena %D 2023 %V 18 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023019/ %R 10.1051/mmnp/2023019 %G en %F 10_1051_mmnp_2023019
Ramsès Djidjou-Demasse; Mircea T. Sofonea; Marc Choisy; Samuel Alizon. Within-host evolutionary dynamics of antimicrobial quantitative resistance. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 24. doi: 10.1051/mmnp/2023019
[1] , , Epidemiological and clinical consequences of within-host evolution Trends Microbiol. 2011 24 32
[2] C.F. Amabile-Cuevas, Antibiotics and Antibiotic Resistance in the Environment. CRC Press (2015).
[3] Populations and infectious diseases: ecology or epidemiology? J. Anim. Ecol. 1991 1 50
[4] Evolutionary epidemiology models to predict the dynamics of antibiotic resistance Evol. Appl. 2019 365 383
[5] Perturbations of positive semigroups and applications to population genetics Math. Z. 1988 259 272
[6] , , Asymptotic and transient behaviour for a nonlocal problem arising in population genetics Eur. J. Appl. Math. 2020 84 110
[7] , , , , , Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones PLoS Comput. Biol. 2020 e1008106
[8] Maximum principles, sliding techniques and applications to nonlocal equations Electron. J. Diff. Equ. 2007 23
[9] , , , , The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria PLoS One 2008 e4036
[10] , Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Computat. Biol. 2016 e1004689
[11] W. Demczuk, I. Martin, P. Sawatzky, V. Allen, B. Lefebvre, L. Hoang, et al., Equations to predict antimicrobial MICs in Neisseria gonorrhoeae using molecular antimicrobial resistance determinants. Antimicrob. Agents Chemother. 64 (2020).
[12] , , On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol. 1990 365 382
[13] , , , The dynamics of adaptation: an illuminating example and a Hamilton- Jacobi approach Theoret. Popul. Biol. 2005 257 271
[14] , , Within-host bacterial growth dynamics with both mutation and horizontal gene transfer J. Math. Biol. 2021 16
[15] , , Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens Math. Models Methods Appl. Sci. 2017 231 290
[16] R. Djidjou-Demasse, Antimicrobial-Quantitative-Resistance-v1 (2021). http://doi.org/10.5281/zenodo.5508202
[17] , , , , Impact of short-course quinolone therapy on susceptible and resistant populations of Staphylococcus taureus J. Infect. Dis. 2009 219 226
[18] EUCAST: Clinical Breakpoints and Dosing of Antibiotics (2023). https://www.eucast.org/clinicaLbreakpoints/.
[19] The competitive cost of antibiotic resistance in Mycobacterium tuberculosis Science 2006 1944 1946
[20] , , , “One-size-fits-all”? Optimizing treatment duration for bacterial infections PLoS ONE 2012 e29838
[21] , , , Dynamics of adaptation and evolutionary branching Phys. Rev. Lett. 1997 2024 2027
[22] , Integrating antimicrobial therapy with host immunity to fight drug-resistant infections: classical vs. adaptive treatment PLoS Comput. Biol. 2016 e1004857
[23] , , , Outpatient Antibiotic use in Europe and association with resistance: a cross-national database study Lancet 2005 579 587
[24] J.K. Hale, Asymptotic Behavior of Dissipative Systems. American Mathematical Society (1988).
[25] , , Exploring the role of the immune response in preventing antibiotic resistance J. Theor. Biol. 2009 655 662
[26] , , How to use a chemotherapeutic agent when resistance to it threatens the patient PLoS Biol. 2017 e2001110
[27] , Drug Concentration heterogeneity facilitates the evolution of drug resistance Proc. Natl. Acad. Sci. U.S.A. 1998 11514 11519
[28] , , , , , The path of least resistance: aggressive or moderate treatment? Proc. Roy. Soc. B: Biol. Sci. 2014 20140566
[29] , Antigenic diversity, transmission mechanisms, and the evolution of pathogens PLoS Comput. Biol. 2009 e1000536
[30] , , , Bacterial charity work leads to population-wide resistance Nature 2010 82 85
[31] , , , , , Molecular and evolutionary bases of within-patient genotypic and phenotypic diversity in Escherichia coli extraintestinal infections PLoS Pathogens 2010 e1001125
[32] , Beyond R0 maximisation: on pathogen evolution and environmental dimensions Trends Ecol. Evol. 2018 458 473
[33] , The population dynamics of antimicrobial chemotherapy Antimicrob. Agents Chemother. 1997 363 373
[34] High deleterious genomic mutation rate in stationary phase of Escherichia coli Science 2003 1558 1560
[35] , , , , Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull. Math. Biol. 2015 1 22
[36] F. Luciani and S. Alizon, The evolutionary dynamics of a rapidly mutating virus within and between hosts: the case of hepatitis C virus. PLoS Comput. Biol. 5 (2009).
[37] , , Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target Antimicrob. Agents Chemother. 2012 2795 2805
[38] J.A.J. Metz, S.A.H. Geritz, G. Meszena, F.J.A. Jacobs and J.S. van Heerwaarden, Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction [monograph] (1995).
[39] , , When does evolution optimize? Evol. Ecol. Res. 2008 629 654
[40] P. Meyer-Nieberg, Banach Lattices. Universitext. Springer-Verlag, Berlin, Heidelberg (1991).
[41] , , Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases Trends Ecol. Evol. 2008 511 517
[42] , , , , , Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids Nat. Commun. 2014 5208
[43] , , , , , Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective Drug Resist. Updates 2011 107 117
[44] , On evolutionarily stable life histories, optimization and the need to be specific about density dependence Oikos 1995 218 224
[45] , , , Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis Evol. Appl. 2018 1498 1511
[46] , , , , , Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant Enterobacteria excreted PLoS Comput. Biol. 2014 e1003840
[47] , Optimizing drug exposure to minimize selection of antibiotic resistance Clin. Infect. Dis. 2007 S129 S136
[48] Humans as the world’s greatest evolutionary force Science 2001 1786 1790
[49] Semigroups of linear operators and applications to partial differential equations 1983 VIII 279
[50] , , The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy Proc. Natl. Acad. Sci. U.S.A. 2011 10871 10877
[51] , , , Quantifying the adaptive potential of an antibiotic resistance enzyme PLoS Genet. 2012 e1002783
[52] , , Compensation of fitness costs and reversibility of antibiotic resistance mutations Antimicrob. Agents Chemother. 2010 2085 2095
[53] Evolution: bacterial mutation in stationary phase Curr. Biol. 2004 R245 R246
[54] , The evolution of plasmid-carried antibiotic resistance BMC Evol. Biol. 2011 130
[55] , Plasmids and evolutionary rescue by drug resistance Evolution 2014 2066 2078
[56] H.R. Thieme, Mathematics in Population Biology. Princeton University Press (2003).
[57] Compactness of bounded trajectories of dynamical systems in infinite dimensional spaces Proc. Roy. Soc. Edinb. A: Math. 1979 19 33
[58] , , , , Population biological principles of drug-resistance evolution in infectious diseases Lancet Infect. Dis. 2011 236 247
Cité par Sources :