A control strategy for the sterile insect technique using exponentially decreasing releases to avoid the hair-trigger effect
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 25.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we introduce a control strategy for applying the Sterile Insect Technique (SIT) to eliminate the population of Aedes mosquitoes which are vectors of various deadly diseases like dengue, zika, chikungunya… in a wide area. We use a system of reaction-diffusion equations to model the mosquito population and study the effect of releasing sterile males. Without any human intervention, and due to the so-called hair-trigger effect, the introduction of only a few individuals (eggs or fertilized females) can lead to the invasion of mosquitoes in the whole region after some time. To avoid this phenomenon, our strategy is to keep releasing a small number of sterile males in the treated zone and move this release forward with a negative forcing speed c to push back the invasive front of wild mosquitoes. By using traveling wave analysis, we show in the present paper that the strategy succeeds in repulsing the population while consuming a finite amount of mosquitoes in any finite time interval even though we treat a moving half-space {x > ct}. Moreover, we succeed in constructing a ‘forced’ traveling wave for our system moving at the same speed as the releases. We also provide some numerical illustrations for our results.
DOI : 10.1051/mmnp/2023018

Alexis Leculier 1 ; Nga Nguyen 2, 3

1 Université de Bordeaux, Département Universitaire des Sciences d’Agen, Avenue Michel Serres, 47000 Agen, France
2 LAGA, CNRS UMR 7539, Institut Galilée, Université Sorbonne Paris Nord, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
3 MAMBA, Inria Paris, Laboratoire Jacques Louis-Lions, Sorbonne Université, 5 place Jussieu, 75005 Paris, France
@article{MMNP_2023_18_a23,
     author = {Alexis Leculier and Nga Nguyen},
     title = {A control strategy for the sterile insect technique using exponentially decreasing releases to avoid the hair-trigger effect},
     journal = {Mathematical modelling of natural phenomena},
     eid = {25},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023018/}
}
TY  - JOUR
AU  - Alexis Leculier
AU  - Nga Nguyen
TI  - A control strategy for the sterile insect technique using exponentially decreasing releases to avoid the hair-trigger effect
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023018/
DO  - 10.1051/mmnp/2023018
LA  - en
ID  - MMNP_2023_18_a23
ER  - 
%0 Journal Article
%A Alexis Leculier
%A Nga Nguyen
%T A control strategy for the sterile insect technique using exponentially decreasing releases to avoid the hair-trigger effect
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023018/
%R 10.1051/mmnp/2023018
%G en
%F MMNP_2023_18_a23
Alexis Leculier; Nga Nguyen. A control strategy for the sterile insect technique using exponentially decreasing releases to avoid the hair-trigger effect. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 25. doi : 10.1051/mmnp/2023018. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023018/

[1] L. Almeida, J. Estrada and N. Vauchelet, The sterile insect technique used as a barrier control against reinfestation, in Optimization and Control for Partial Differential Equations, Vol. 29 of Radon Series on Computational and Applied Mathematics. De Gruyter, (2022) 91–112.

[2] L. Almeida, J. Estrada, N. Vauchelet Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations Math. Model. Nat. Phenom 2022 22

[3] L. Almeida, A. Léculier, G. Nadin and Y. Privat, Optimal control of bistable travelling waves: looking for the best spatial distribution of a killing action to block a pest invasion. arXiv preprint (2022).

[4] L. Almeida, A. Léculier, N. Vauchelet Analysis of the “Rolling carpet” strategy to eradicate an invasive species SIAM J. Math. Anal 2023 275 309

[5] R. Anguelov, Y. Dumont and I.V.Y. Djeumen, On the use of Traveling Waves for Pest/Vector elimination using the Sterile Insect Technique, October 2020. arXiv:2010.00861 [math].

[6] D.G. Aronson and H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, edited by J.A. Goldstein, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg (1975) 5–49.

[7] D.G. Aronson, H.F. Weinberger Multidimensional nonlinear diffusion arising in population genetics Adv. Math 1978 33 76

[8] H. Berestycki, O. Diekmann, C.J. Nagelkerke, P.A. Zegeling Can a species keep pace with a shifting climate? Bull. Math. Biol. 2009 399 429

[9] H. Berestycki, J. Fang Forced waves of the Fisher—KPP equation in a shifting environment J. Diff. Equ 2018 2157 2183

[10] P.-A. Bliman, D. Cardona-Salgado, Y. Dumont, O. Vasilieva Implementation of Control STRATEGIES for sterile insect techniques Math. Biosc 2019 43 60

[11] A. Bressan, M.T. Chiri, N. Salehi On the optimal control of propagation fronts Math. Models Methods Appl. Sci 2022 1109 1140

[12] B. Caputo, R. Moretti, Μ. Manica, P. Serini, E. Lampazzi, M. Bonanni, G. Fabbri, V. Pichler, A. Della Torre, Μ. Calvitti A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated wolbachia infection in an Italian urban area Pest Manag. Sci 2020 1324 1332

[13] C. Dufourd, Y. Dumont Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control Comput. Math. Appl 2013 1695 1715

[14] V.A. Dyck, J. Hendrichs and A.S. Robinson, Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, 2nd ed. CRC Press, Boca Raton (2021).

[15] J. Fang, X.-Q. Zhao Monotone wavefronts for partially degenerate reaction-diffusion systems J. Dyn. Diff. Equ 2009 663 680

[16] R. Gato Armas, Z. Menéndez, E. Prieto, R. Argilés, Μ. Rodríguez, W. Baldoquín Rodríguez, Y. Hernandez Barrios, D. Pérez Chacón, J. Anaya, I. Fuentes, C. Lorenzo, K. González, Y. Campo, J. Bouyer Sterile insect technique: successful suppression of an aedes aegypti field population in Cuba Insects 2021 469

[17] L. Girardin Non-cooperative Fisher—KPP systems: traveling waves and long-time behavior Nonlinearity 2017 108

[18] L. Girardin Non-cooperative Fisher—KPP systems: asymptotic behavior of traveling waves Math. Models Methods Appl. Sci 2018 1067 1104

[19] L. Girardin, Q. Griette A Liouville-type result for non-cooperative Fisher—KPP systems and nonlocal equations in cylinders Acta Appl. Math 2020 123 139

[20] E. Hamel and L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions. J. Diff. Equ. (2010) 1726.

[21] A. Kolmogorov, I. Petrovskii, N. Piscunov A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem Byul. Moskovskogo Gos. Univ 1938 1 25

[22] Μ. A. Lewis, P. Van Den Driessche Waves of extinction from sterile insect release Math. Biosci. 1993 221 247

[23] R. Lui Biological growth and spread modeled by systems of recursions. I. mathematical theory Math. Biosci 1989 269 295

[24] V.S. Manoranjan, P. Van Den Driessche On a diffusion model for sterile insect release Math. Biosci. 1986 199 208

[25] S. Seirin Lee, R.E. Baker, E.A. Gaffney, S.M. White Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks J. Theor. Biol 2013 78 90

[26] J. Smoller, Shock Waves and Reaction—Diffusion Equations. Springer Science Business Media (2012).

[27] Μ. Strugarek, H. Bossin, Y. Dumont On the use of the sterile insect release technique to reduce or eliminate mosquito populations Appl. Math. Modell 2019 443 470

[28] E. Trélat, J. Zhu and E. Zuazua, Optimal Population Control Through Sterile Males. Working paper or preprint, October 2017.

[29] E. Trélat, J. Zhu, E. Zuazua Allee optimal control of a system in ecology Math. Models Methods Appl. Sci 2018 1665 1697

[30] A. Volpert, V. Volpert and V. Volpert, Traveling wave solutions of parabolic systems, Vol. 140 of Translations of Mathematical Monographs. American Mathematical Society (1994).

[31] H.F. Weinberger, Μ. A. Lewis, B. Li Analysis of linear determinacy for spread in cooperative models J. Math. Biol 2002 183 218

[32] X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, Y. Liang, X. Pan, L. Hu, Q. Sun, X. Wang, Y. Wei, J. Zhu, W. Qian, Z. Yan, A. Parker, J. Gilles, K. Bourtzis, J. Bouyer, Z. Xi Incompatible and sterile insect techniques combined eliminate mosquitoes Nature 2019 1

[33] Z. Zhu, B. Zheng, Y. Shi, R. Yan, J. Yu Stability and periodicity in a mosquito population suppression model composed of two sub-models Nonlinear Dyn 2022 1 13

Cité par Sources :