Voir la notice de l'article provenant de la source EDP Sciences
Grigory Panasenko 1 ; Konstantinas Pileckas 2
@article{MMNP_2023_18_a11, author = {Grigory Panasenko and Konstantinas Pileckas}, title = {Pressure boundary conditions for viscous flows in thin tube structures: {Stokes} equations with locally distributed {Brinkman} term}, journal = {Mathematical modelling of natural phenomena}, eid = {17}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023016}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023016/} }
TY - JOUR AU - Grigory Panasenko AU - Konstantinas Pileckas TI - Pressure boundary conditions for viscous flows in thin tube structures: Stokes equations with locally distributed Brinkman term JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023016/ DO - 10.1051/mmnp/2023016 LA - en ID - MMNP_2023_18_a11 ER -
%0 Journal Article %A Grigory Panasenko %A Konstantinas Pileckas %T Pressure boundary conditions for viscous flows in thin tube structures: Stokes equations with locally distributed Brinkman term %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023016/ %R 10.1051/mmnp/2023016 %G en %F MMNP_2023_18_a11
Grigory Panasenko; Konstantinas Pileckas. Pressure boundary conditions for viscous flows in thin tube structures: Stokes equations with locally distributed Brinkman term. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 17. doi : 10.1051/mmnp/2023016. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023016/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions Commun. Pure Appl. Math. 1959 623 727
, ,[2] Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, volume distribution of holes Arch. Ration. Mech. Anal. 1991 209 259
[3] Mixed-dimensional modeling of time-dependent wave problems using the Panasenko construction J. Theor. Comput. Acoust. 2018 1850034
,[4] On averaging of periodic structures Pr. Mat. Mech. 1977 993 1006
[5] Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure J. Math Pures Appl. 2019 148 166
, ,[6] On the Bingham flow in a thin Y-like shaped structure J. Math. Fluid Mech. 2022
,[7] Asymptotic analysis and numerical modelling of mass transport in tubular structure Math. Models Methods Appl. Sci. 2010 397 421
, ,[8] The Stokes and Navier-Stokes equations with boundary conditions involving pressure Jap. J. Math. 1994
, ,[9] A.-C. Egloffe, Study of some inverse problems for the Stokes system. Application to the lungs, These de doctorat, l’Universite Pierre et Marie Curie-Paris VI, 2012.
[10] Equations de phenomenes de surface pour l’ecoulement dans un modele de milieu poreux J. Mécan. 1975 73 108
,[11] One dimensional models for blood flow in arteries J. Eng. Math. 2003 251 276
, ,[12] P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems. Springer (2011).
[13] P. Galdi, R. Rannacher, A.M. Robertson and S. Turek, Hemodynamical Flows, Modeling, Analysis and Simulation. Oberwolfach Seminars, Vol. 37. Birkhäuser, Basel, Boston, Berlin (2008).
[14] F. Golfier, D. Lasseur and M. Quintard, Etude du probléme de Darcy-Brinkman dans une structure fluide/poreux, 14 Congres Francais de Mécanique, 1999.
[15] F. Harary, Graph Theory. Addison-Wesley, Reading, Massachusetts (1971).
[16] Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations Int. J. Numer. Methods Fluids. 1996 325 352
, ,[17] Solvability in a finite pipe of steady-state Navier-Stokes equations with boundary conditions involving Bernoulli pressure Calc. Var. 2020
, ,[18] V. Kozlov, V. Maz’ya and A. Movchan, Asymptotic Analysis of Fields in Multi-structures. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1999).
[19] One-dimensional model for flows in the junction of thin channels, in particular, arterial trees Math. Sb 2017 56 105
,[20] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid. Gordon and Breach (1969).
[21] On some problems of vector analysis and generalized formulations of boundary value problems for the Navier-Stokes equations Zapiski Nauchn. Sem. LOMI 1976 81 116
,[22] On boundary conditions of flow in porous media Int. J. Eng. Sci. 1975 923 940
,[23] Equations and interface conditions for acoustic phenomena in porous media J. Math. Anal. Appl. 1977 813 834
,[24] Steady flow of a non-Newtonian fluid in unbounded channels and pipes Math. Models Methods Appl. Sci. 2000 1425 1445
[25] A note on Kirchhoff junction rule for power-law fluids Z. Naturf. A 2015 695 702
,[26] Asymptotic analysis of the Navier-Stokes system in a plane domain with thin channels Asymptotic Anal. 2000 59 89
,[27] Method of asymptotic partial decomposition of Domain Math. Models Methods Appl. Sci. 1998 139 156
[28] Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure C.R. Acad. Sci. Paris Serie Ilb 1998 867 872
[29] Partial asymptotic decomposition of domain: Navier-Stokes equation in tube structure C.R. Acad. Sci. Paris Seerie IIb 1998 893 898
[30] G. Panasenko, Multi-scale Modeling for Structures and Composites. Springer, Dordrecht (2005).
[31] Divergence equation in thin-tube Structure Appl. Anal. 2015 1450 1459
,[32] Flows in a tube structure: equation on the graph J. Math. Phys. 2014 081505
,[33] Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without boundary layer-in-time Nonlinear Anal. Ser. A Theory Methods Applic. 2015 125 168
,[34] Steady state non-Newtonian flow with strain rate dependent viscosity in thin tube structure with no-slop boundary condition Math. Model. Natural Phenomena 2022
, ,[35] Conditions aux limites sur la pression pour les equations de Stokes et de Navier-Stokes C.R. Acad. Sci. Paris Ser. I Math. 1986 403 406
[36] A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in Modelling of Living Systems, Handbook of Numerical Analysis Series, edited by N. Ayache (2002).
[37] Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations Multiscale Model. Simul. 2003 173 195
,[38] E. Sanchez-Palencia, Equations aux derivees partielles. Solutions periodiques par rapport aux variables d’espace et applications. Compt. Rend. Acad. Sci. Paris, seer. A (1970) 1129–1132.
[39] E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory. Springer-Verlag, New York (1980).
[40] L. Tartar, Homogenization. Cours Peccot. College de France, Paris (1977).
[41] L. Tartar, Topics in Non Linear Analysis. Report of the University of Orsay, France (1978).
[42] R. Temam, Navier-Stokes Equations. North-Holland Pub. Company (1977).
[43] On averaging of some boundary value problems in domains with periodic structure USSR Comp. Math. and Math. Phys. 1982 117 128
Cité par Sources :