Lahbib Benahmadi 1 ; Mustapha Lhous 1 ; Abdessamad TRIDANE 2 ; Mostafa Rachik 3
@article{10_1051_mmnp_2023015,
author = {Lahbib Benahmadi and Mustapha Lhous and Abdessamad TRIDANE and Mostafa Rachik},
title = {Output trajectory controllability of a discrete-time sir epidemic model},
journal = {Mathematical modelling of natural phenomena},
eid = {16},
year = {2023},
volume = {18},
doi = {10.1051/mmnp/2023015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/}
}
TY - JOUR AU - Lahbib Benahmadi AU - Mustapha Lhous AU - Abdessamad TRIDANE AU - Mostafa Rachik TI - Output trajectory controllability of a discrete-time sir epidemic model JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/ DO - 10.1051/mmnp/2023015 LA - en ID - 10_1051_mmnp_2023015 ER -
%0 Journal Article %A Lahbib Benahmadi %A Mustapha Lhous %A Abdessamad TRIDANE %A Mostafa Rachik %T Output trajectory controllability of a discrete-time sir epidemic model %J Mathematical modelling of natural phenomena %D 2023 %V 18 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/ %R 10.1051/mmnp/2023015 %G en %F 10_1051_mmnp_2023015
Lahbib Benahmadi; Mustapha Lhous; Abdessamad TRIDANE; Mostafa Rachik. Output trajectory controllability of a discrete-time sir epidemic model. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 16. doi: 10.1051/mmnp/2023015
[1] , , Output controllability of the discrete-time linear switched systems Nonlinear Anal.: Hybrid Syst. 2016 1 10
[2] N.T.J. Bailey et al., The Mathematical Theory of Infectious Diseases and its Applications. Charles Griffin Company Ltd, Bucks (1975).
[3] , , Application of optimal control theory to an seir model with immigration of infectives Int. J. Comput. Sci. Issues (IJCSI) 2013 230
[4] , Controllability along a trajectory: a variational approach SIAM J. Control Optim. 1993 900 927
[5] , Trajectory controllability of semilinear differential evolution equations with impulses and delay Open J. Appl. Sci. 2013 37 43
[6] , Models for transmission of disease with immigration of infectives Math. Biosci. 2001 143 154
[7] , , , Trajectory controllability of nonlinear integrodifferential system J. Franklin Inst. 2010 1065 1075
[8] A. Chapman and M. Mesbahi, State controllability, output controllability and stabilizability of networks: a symmetry perspective. in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE (2015) 4776–4781.
[9] J.-M. Coron, Control and nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society (2007).
[10] , , On vaccination controls for the seir epidemic model Commun. Nonlinear Sci. Numer. Simul. 2012 2637 2658
[11] J.A.M. Felippe De Souza, Control of nonlinear distributed parameter systems using fixed point theorems: some new techniques. in Control of Distributed Parameter Systems 1989. Elsevier (1990) 427–432.
[12] J.A.M. Felippe De Souza, Control of nonlinear distributed parameter systems using fixed theorems: some new techniques. In Control of Distributed Parameter Systems 1989, pages 427–432. Elsevier, 1990.
[13] , State space theory of linear time invariant systems with delays in state, control, and observation variables, I J. Math. Anal. Appl. 1987 361 399
[14] Relative and trajectory controllability of linear discrete systems with constant coefficients and a single delay IEEE Trans. Automatic Control 2018 2158 2165
[15] , , , Global stability analysis for a generalized delayed sir model with vaccination and treatment Adv. Differ. Equ. 2019 1 19
[16] , Functional output ε-controllability for linear systems on hilbert spaces Syst. Control Lett. 1983 313 320
[17] , , Robust sliding control of SEIR epidemic models Math. Probl. Eng. 2014 1 11
[18] N. Islam, S.J. Sharp, G. Chowell, S. Shabnam, I. Kawachi, B. Lacey, J.M. Massaro, R.B. D’Agostino and M. White, Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ 370 (2020).
[19] Constrained controllability of semilinear systems with delays Nonlinear Dyn. 2009 169 177
[20] Controllability of dynamical systems. A survey Bull. Polish Acad. Sci.: Tech. Sci. 2013 335 342
[21] J. Klamka, A. Czornik, M. Niezabitowski and A. Babiarz, Trajectory controllability of semilinear systems with delay. in Asian Conference on Intelligent Information and Database Systems. Springer (2015) 313–323.
[22] , , , , , Stability analysis and optimal vaccination strategies for a SIR epidemic model with a nonlinear incidence rate Int. J. Nonlinear Sci. 2013 323 333
[23] , , , , , Stability analysis and optimal vaccination strategies for an SIR epidemic model with a nonlinear incidence rate Int. J. Nonlinear Sci 2013 323 333
[24] , , Optimal vaccination control and free optimal time for a general SEIR-epidemic model World J. Model. Simul. 2019 3 11
[25] , , Free optimal time control problem for a SEIR-epidemic model with immigration of infective Int. J. Comput. Appl. 2015 1 5
[26] , , The application of fixed point theorems to global nonlinear controllability problems Banach Center Publ. 1985 319 344
[27] , , Exact and trajectory controllability of second-order evolution systems with impulses and deviated arguments Math. Methods Appl. Sci. 2018 4259 4272
[28] , Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons J. Math. Anal. Appl. 2011 603 619
[29] , , Trajectory controllability of a semilinear parabolic system J. Anal. 2020 107 115
[30] , The null controllability of nonlinear discrete control systems with degeneracy IMA J. Math. Control Inform. 2017 999 1010
[31] On small-controllability and controllability of a class of nonlinear systems Int. J. Control 2014 2167 2175
[32] , On near-controllability and stabilizability of a class of discrete-time bilinear systems Syst. Control Lett. 2011 650 657
[33] A. Tridane, M.A. Hajji and E. Mojica-Nava, Optimal drug treatment in a simple pandemic switched system using polynomial approach, in International Conference on Mathematics and Statistics. Springer (2015), 227–240.
[34] , Optimal control of vaccination and treatment for an SIR epidemiological model World J. Model. Simul. 2012 194 204
[35] , , , Optimal strategy of vaccination & treatment in an sir epidemic model Math. Comput. Simul. 2017 63 77
[36] , , An output controllability problem for semilinear distributed hyperbolic systems Int. J. Appl. Math. Comput. Sci. 2007 437
[37] , , Global stability of an SIR epidemic model with constant infectious period Appl. Math. Comput. 2008 285 291
Cité par Sources :