Voir la notice de l'article provenant de la source EDP Sciences
Lahbib Benahmadi 1 ; Mustapha Lhous 1 ; Abdessamad TRIDANE 2 ; Mostafa Rachik 3
@article{MMNP_2023_18_a19, author = {Lahbib Benahmadi and Mustapha Lhous and Abdessamad TRIDANE and Mostafa Rachik}, title = {Output trajectory controllability of a discrete-time sir epidemic model}, journal = {Mathematical modelling of natural phenomena}, eid = {16}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/} }
TY - JOUR AU - Lahbib Benahmadi AU - Mustapha Lhous AU - Abdessamad TRIDANE AU - Mostafa Rachik TI - Output trajectory controllability of a discrete-time sir epidemic model JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/ DO - 10.1051/mmnp/2023015 LA - en ID - MMNP_2023_18_a19 ER -
%0 Journal Article %A Lahbib Benahmadi %A Mustapha Lhous %A Abdessamad TRIDANE %A Mostafa Rachik %T Output trajectory controllability of a discrete-time sir epidemic model %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/ %R 10.1051/mmnp/2023015 %G en %F MMNP_2023_18_a19
Lahbib Benahmadi; Mustapha Lhous; Abdessamad TRIDANE; Mostafa Rachik. Output trajectory controllability of a discrete-time sir epidemic model. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 16. doi : 10.1051/mmnp/2023015. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/
[1] Output controllability of the discrete-time linear switched systems Nonlinear Anal.: Hybrid Syst. 2016 1 10
, ,[2] N.T.J. Bailey et al., The Mathematical Theory of Infectious Diseases and its Applications. Charles Griffin Company Ltd, Bucks (1975).
[3] Application of optimal control theory to an seir model with immigration of infectives Int. J. Comput. Sci. Issues (IJCSI) 2013 230
, ,[4] Controllability along a trajectory: a variational approach SIAM J. Control Optim. 1993 900 927
,[5] Trajectory controllability of semilinear differential evolution equations with impulses and delay Open J. Appl. Sci. 2013 37 43
,[6] Models for transmission of disease with immigration of infectives Math. Biosci. 2001 143 154
,[7] Trajectory controllability of nonlinear integrodifferential system J. Franklin Inst. 2010 1065 1075
, , ,[8] A. Chapman and M. Mesbahi, State controllability, output controllability and stabilizability of networks: a symmetry perspective. in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE (2015) 4776–4781.
[9] J.-M. Coron, Control and nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society (2007).
[10] On vaccination controls for the seir epidemic model Commun. Nonlinear Sci. Numer. Simul. 2012 2637 2658
, ,[11] J.A.M. Felippe De Souza, Control of nonlinear distributed parameter systems using fixed point theorems: some new techniques. in Control of Distributed Parameter Systems 1989. Elsevier (1990) 427–432.
[12] J.A.M. Felippe De Souza, Control of nonlinear distributed parameter systems using fixed theorems: some new techniques. In Control of Distributed Parameter Systems 1989, pages 427–432. Elsevier, 1990.
[13] State space theory of linear time invariant systems with delays in state, control, and observation variables, I J. Math. Anal. Appl. 1987 361 399
,[14] Relative and trajectory controllability of linear discrete systems with constant coefficients and a single delay IEEE Trans. Automatic Control 2018 2158 2165
[15] Global stability analysis for a generalized delayed sir model with vaccination and treatment Adv. Differ. Equ. 2019 1 19
, , ,[16] Functional output ε-controllability for linear systems on hilbert spaces Syst. Control Lett. 1983 313 320
,[17] Robust sliding control of SEIR epidemic models Math. Probl. Eng. 2014 1 11
, ,[18] N. Islam, S.J. Sharp, G. Chowell, S. Shabnam, I. Kawachi, B. Lacey, J.M. Massaro, R.B. D’Agostino and M. White, Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ 370 (2020).
[19] Constrained controllability of semilinear systems with delays Nonlinear Dyn. 2009 169 177
[20] Controllability of dynamical systems. A survey Bull. Polish Acad. Sci.: Tech. Sci. 2013 335 342
[21] J. Klamka, A. Czornik, M. Niezabitowski and A. Babiarz, Trajectory controllability of semilinear systems with delay. in Asian Conference on Intelligent Information and Database Systems. Springer (2015) 313–323.
[22] Stability analysis and optimal vaccination strategies for a SIR epidemic model with a nonlinear incidence rate Int. J. Nonlinear Sci. 2013 323 333
, , , , ,[23] Stability analysis and optimal vaccination strategies for an SIR epidemic model with a nonlinear incidence rate Int. J. Nonlinear Sci 2013 323 333
, , , , ,[24] Optimal vaccination control and free optimal time for a general SEIR-epidemic model World J. Model. Simul. 2019 3 11
, ,[25] Free optimal time control problem for a SEIR-epidemic model with immigration of infective Int. J. Comput. Appl. 2015 1 5
, ,[26] The application of fixed point theorems to global nonlinear controllability problems Banach Center Publ. 1985 319 344
, ,[27] Exact and trajectory controllability of second-order evolution systems with impulses and deviated arguments Math. Methods Appl. Sci. 2018 4259 4272
, ,[28] Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons J. Math. Anal. Appl. 2011 603 619
,[29] Trajectory controllability of a semilinear parabolic system J. Anal. 2020 107 115
, ,[30] The null controllability of nonlinear discrete control systems with degeneracy IMA J. Math. Control Inform. 2017 999 1010
,[31] On small-controllability and controllability of a class of nonlinear systems Int. J. Control 2014 2167 2175
[32] On near-controllability and stabilizability of a class of discrete-time bilinear systems Syst. Control Lett. 2011 650 657
,[33] A. Tridane, M.A. Hajji and E. Mojica-Nava, Optimal drug treatment in a simple pandemic switched system using polynomial approach, in International Conference on Mathematics and Statistics. Springer (2015), 227–240.
[34] Optimal control of vaccination and treatment for an SIR epidemiological model World J. Model. Simul. 2012 194 204
,[35] Optimal strategy of vaccination treatment in an sir epidemic model Math. Comput. Simul. 2017 63 77
, , ,[36] An output controllability problem for semilinear distributed hyperbolic systems Int. J. Appl. Math. Comput. Sci. 2007 437
, ,[37] Global stability of an SIR epidemic model with constant infectious period Appl. Math. Comput. 2008 285 291
, ,Cité par Sources :