Output trajectory controllability of a discrete-time sir epidemic model
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 16.

Voir la notice de l'article provenant de la source EDP Sciences

Developing new approaches that help control the spread of infectious diseases is a critical issue for public health. Such approaches must consider the available resources and capacity of the healthcare system. In this paper, we present a new mathematical approach to controlling an epidemic model by investigating the optimal control that aims to bring the output of the epidemic to target a desired disease output yd = (ydi)i∈{0,...,N}. First, we use the state-space technique to transfer the trajectory controllability to optimal control with constraints on the final state. Then, we use the fixed point theorems to determine the set of admissible controls and solve the output trajectory controllability problem. Finally, we apply our method to the model of a measles epidemic, and we give a numerical simulation to illustrate the findings of our approach.
DOI : 10.1051/mmnp/2023015

Lahbib Benahmadi 1 ; Mustapha Lhous 1 ; Abdessamad TRIDANE 2 ; Mostafa Rachik 3

1 Fundamental and Applied Mathematics Laboratory, Department of Mathematics and Computer Science, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, B.P. 5366 Maarif Casablanca, Morocco
2 Department of Mathematical Sciences, United Arab Emirates University, Al-Ain PO Box 15551, UAE
3 Laboratory of Analysis Modelling and Simulation, Department of Mathematics and Computer Science, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, Sidi Othman Casablanca B.P. 7955, Morocco
@article{MMNP_2023_18_a19,
     author = {Lahbib Benahmadi and Mustapha Lhous and Abdessamad TRIDANE and Mostafa Rachik},
     title = {Output trajectory controllability of a discrete-time sir epidemic model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {16},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/}
}
TY  - JOUR
AU  - Lahbib Benahmadi
AU  - Mustapha Lhous
AU  - Abdessamad TRIDANE
AU  - Mostafa Rachik
TI  - Output trajectory controllability of a discrete-time sir epidemic model
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/
DO  - 10.1051/mmnp/2023015
LA  - en
ID  - MMNP_2023_18_a19
ER  - 
%0 Journal Article
%A Lahbib Benahmadi
%A Mustapha Lhous
%A Abdessamad TRIDANE
%A Mostafa Rachik
%T Output trajectory controllability of a discrete-time sir epidemic model
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/
%R 10.1051/mmnp/2023015
%G en
%F MMNP_2023_18_a19
Lahbib Benahmadi; Mustapha Lhous; Abdessamad TRIDANE; Mostafa Rachik. Output trajectory controllability of a discrete-time sir epidemic model. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 16. doi : 10.1051/mmnp/2023015. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023015/

[1] A. Babiarz, A. Czornik, M. Niezabitowski Output controllability of the discrete-time linear switched systems Nonlinear Anal.: Hybrid Syst. 2016 1 10

[2] N.T.J. Bailey et al., The Mathematical Theory of Infectious Diseases and its Applications. Charles Griffin Company Ltd, Bucks (1975).

[3] O. Balatif, M. Rachik, J. Bouyaghroumni Application of optimal control theory to an seir model with immigration of infectives Int. J. Comput. Sci. Issues (IJCSI) 2013 230

[4] R.M. Bianchini, G. Stefani Controllability along a trajectory: a variational approach SIAM J. Control Optim. 1993 900 927

[5] M. Bin, Y. Liu Trajectory controllability of semilinear differential evolution equations with impulses and delay Open J. Appl. Sci. 2013 37 43

[6] F. Brauer, P. Van Den Driessche Models for transmission of disease with immigration of infectives Math. Biosci. 2001 143 154

[7] D.N. Chalishajar, R.K. George, A.K. Nandakumaran, F.S. Acharya Trajectory controllability of nonlinear integrodifferential system J. Franklin Inst. 2010 1065 1075

[8] A. Chapman and M. Mesbahi, State controllability, output controllability and stabilizability of networks: a symmetry perspective. in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE (2015) 4776–4781.

[9] J.-M. Coron, Control and nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society (2007).

[10] M. De La Sen, A. Ibeas, A.-Q. Santiago On vaccination controls for the seir epidemic model Commun. Nonlinear Sci. Numer. Simul. 2012 2637 2658

[11] J.A.M. Felippe De Souza, Control of nonlinear distributed parameter systems using fixed point theorems: some new techniques. in Control of Distributed Parameter Systems 1989. Elsevier (1990) 427–432.

[12] J.A.M. Felippe De Souza, Control of nonlinear distributed parameter systems using fixed theorems: some new techniques. In Control of Distributed Parameter Systems 1989, pages 427–432. Elsevier, 1990.

[13] M.C. Delfour, J. Karrakchou State space theory of linear time invariant systems with delays in state, control, and observation variables, I J. Math. Anal. Appl. 1987 361 399

[14] J. Diblík Relative and trajectory controllability of linear discrete systems with constant coefficients and a single delay IEEE Trans. Automatic Control 2018 2158 2165

[15] A. Elazzouzi, A. Lamrani Alaoui, M. Tilioua, A. Tridane Global stability analysis for a generalized delayed sir model with vaccination and treatment Adv. Differ. Equ. 2019 1 19

[16] A. Germani, S. Monaco Functional output ε-controllability for linear systems on hilbert spaces Syst. Control Lett. 1983 313 320

[17] A. Ibeas, M. De La Sen, A.-Q. Santiago Robust sliding control of SEIR epidemic models Math. Probl. Eng. 2014 1 11

[18] N. Islam, S.J. Sharp, G. Chowell, S. Shabnam, I. Kawachi, B. Lacey, J.M. Massaro, R.B. D’Agostino and M. White, Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ 370 (2020).

[19] J. Klamka Constrained controllability of semilinear systems with delays Nonlinear Dyn. 2009 169 177

[20] J. Klamka Controllability of dynamical systems. A survey Bull. Polish Acad. Sci.: Tech. Sci. 2013 335 342

[21] J. Klamka, A. Czornik, M. Niezabitowski and A. Babiarz, Trajectory controllability of semilinear systems with delay. in Asian Conference on Intelligent Information and Database Systems. Springer (2015) 313–323.

[22] H. Laarbi, A. Abta, M. Rachik, E. Labriji, J. Bouyaghroumni, E. Labriji Stability analysis and optimal vaccination strategies for a SIR epidemic model with a nonlinear incidence rate Int. J. Nonlinear Sci. 2013 323 333

[23] H. Laarbi, A. Abta, M. Rachik, E. Labriji, J. Bouyaghroumni, E. Labriji Stability analysis and optimal vaccination strategies for an SIR epidemic model with a nonlinear incidence rate Int. J. Nonlinear Sci 2013 323 333

[24] M. Lhous, M. Rachik, A. Larrache Optimal vaccination control and free optimal time for a general SEIR-epidemic model World J. Model. Simul. 2019 3 11

[25] M. Lhous, M. Rachik, A. Larrache Free optimal time control problem for a SEIR-epidemic model with immigration of infective Int. J. Comput. Appl. 2015 1 5

[26] K. Magnusson, A.J. Pritchard, M.D. Quinn The application of fixed point theorems to global nonlinear controllability problems Banach Center Publ. 1985 319 344

[27] M. Muslim, A. Kumar, R. Sakthivel Exact and trajectory controllability of second-order evolution systems with impulses and deviated arguments Math. Methods Appl. Sci. 2018 4259 4272

[28] R. Miller Neilan, S. Lenhart Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons J. Math. Anal. Appl. 2011 603 619

[29] R. Sandilya, R.K. George, S. Kumar Trajectory controllability of a semilinear parabolic system J. Anal. 2020 107 115

[30] X.-L. Tan, Y. Li The null controllability of nonlinear discrete control systems with degeneracy IMA J. Math. Control Inform. 2017 999 1010

[31] L. Tie On small-controllability and controllability of a class of nonlinear systems Int. J. Control 2014 2167 2175

[32] L. Tie, K.-Y. Cai On near-controllability and stabilizability of a class of discrete-time bilinear systems Syst. Control Lett. 2011 650 657

[33] A. Tridane, M.A. Hajji and E. Mojica-Nava, Optimal drug treatment in a simple pandemic switched system using polynomial approach, in International Conference on Mathematics and Statistics. Springer (2015), 227–240.

[34] T. Tajudeen Yusuf, F. Benyah Optimal control of vaccination and treatment for an SIR epidemiological model World J. Model. Simul. 2012 194 204

[35] G. Zaman, Y.H. Kang, G. Cho, I.H. Jung Optimal strategy of vaccination treatment in an sir epidemic model Math. Comput. Simul. 2017 63 77

[36] E. Zerrik, R. Larhrissi, H. Bourray An output controllability problem for semilinear distributed hyperbolic systems Int. J. Appl. Math. Comput. Sci. 2007 437

[37] F. Zhang, Z.-Z. Li, F. Zhang Global stability of an SIR epidemic model with constant infectious period Appl. Math. Comput. 2008 285 291

Cité par Sources :