Voir la notice de l'article provenant de la source EDP Sciences
Nader El Khatib 1 ; Oualid Kafi 2 ; Diana Oliveira 3 ; Adélia Sequeira 2, 4 ; Jorge Tiago 2, 4
@article{MMNP_2023_18_a34, author = {Nader El Khatib and Oualid Kafi and Diana Oliveira and Ad\'elia Sequeira and Jorge Tiago}, title = {A numerical {3D} fluid-structure interaction model for blood flow in a {MRI-based} atherosclerotic artery}, journal = {Mathematical modelling of natural phenomena}, eid = {26}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/} }
TY - JOUR AU - Nader El Khatib AU - Oualid Kafi AU - Diana Oliveira AU - Adélia Sequeira AU - Jorge Tiago TI - A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/ DO - 10.1051/mmnp/2023014 LA - en ID - MMNP_2023_18_a34 ER -
%0 Journal Article %A Nader El Khatib %A Oualid Kafi %A Diana Oliveira %A Adélia Sequeira %A Jorge Tiago %T A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/ %R 10.1051/mmnp/2023014 %G en %F MMNP_2023_18_a34
Nader El Khatib; Oualid Kafi; Diana Oliveira; Adélia Sequeira; Jorge Tiago. A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 26. doi : 10.1051/mmnp/2023014. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/
[1] Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study Cell Rep 2020 108491
, , , , , , ,[2] Beta discontinuity capturing for advection-dominated processes with application to arterial drug delivery Int. J. Numer. Meth. Fluids 2007 593 608
, , ,[3] A computational fluid-structure interaction study for carotids with different atherosclerotic plaques J. Biomech. Eng 2021
, , , , , , , ,[4] Generalized Navier-Stokes equations with non-standard conditions for blood flow in atherosclerotic artery Appl. Anal 2016 1645 1670
, ,[5] Streamline upwind/Petrov-Galerkin formulations for a convection dominated flows with a particular emphasis on the incompressible Navier-Stokes equations Comput. Meth. Appl. Mech. Eng 1982 199 259
,[6] Effect of calcification modulus and geometry on stress in models of calcified atherosclerotic plaque Cardiovasc. Eng. Tech 2014 244 260
,[7] Characteristics of wall shear stress and pressure of intracranial atherosclerosis analyzed by a computational fluid dynamics model: a pilot study Front. Neurol 2020
, , , , , , , , , ,[8] P.G. Ciarlet, Mathematical Elasticity. Vol. 1 of Three Dimensional Elasticity. North-Holland (1988).
[9] Fluid-structure interaction simulations of physiological blood flow in the aorta Comput. Fluids 2011 46 57
, , , , ,[10] Shear stress and plaque development Expert Rev. Cardiovasc. Ther 2010 545 556
, , , , , , , , ,[11] A modified newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting Numer. Math 1974 289 315
[12] An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluidstructure interactions Comput. Methods Appl. Mech. Eng 1982 689 723
, ,[13] N. El Khatib, Modélisation mathématique de l’athérosclérose. PhD thesis, Université Claude Bernard-Lyon 1, 2009.
[14] Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery Math. Biosci. Eng 2017 179 193
, , ,[15] E. Raggiano, L. Formaggia and L. Antiga, An open-source tool for patient-specific fluid-structure vessel mesh generation. Fifth International Symposium on Modelling of Physiological Flows, Chia Laguna, Italy, 2013.
[16] Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology Math. Biosci. Eng 2011 409 423
, , ,[17] A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall IEEE J. Biomed. Health Inform 2015 1137 1145
, , , , ,[18] Motion synchronisation patterns of the carotid atheromatous plaque from B-mode ultrasound Sci. Rep 2020 11221
, , , , ,[19] Optimal control in blood flow simulations Int. J. Non-linear Meeh 2014 57 69
, ,[20] Developing a vaccine against atherosclerosis Nat. Rev. Cardiol 2020 451 452
,[21] A unified approach to compressible and incompressible flows Comput. Meth. Appl. Mech. Eng 1994 389 395
,[22] Sundials: suite of non-linear and differential/algebraic equation solvers ACM Trans. Math. Softw 2005 363 396
, , , , , ,[23] Arbitrary Lagrangian-Eulerian finite element formulation for incompressible viscous flows Comput. Method Appl. Μ 1981 329 349
, ,[24] A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries J. Comput. Appl. Math 2010 2783 2791
, ,[25] Absorbing boundary conditions for a 3D non-Newtonian fluid-structure interaction model for blood flow in arteries Int. J. Eng. Sci 2010 1332 1349
, ,[26] Association between risk factors for atherosclerosis and mechanical forces in carotid artery Stroke 2000 2319 2324
, ,[27] Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress Arterioscler. Thromb. Vasc. Biol 1985 293 302
, , ,[28] Stress analysis of carotid plaque rupture based on in vivo high resolution MRI J. Biomech 2006 2611 2622
, , , , , , ,[29] Calcifications, arterial stiffness and atherosclerosis Adv. Cardiol 2007 234 244
, ,[30] J.B. Mendieta, D. Fontanarosa, J. Wang, K.P. Paritala, T. McGahan, T. Lloyd and Z. Li, The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech. Model Mechanobiol. (2020). https://doi.org/10.1007/sl0237-019-01282-7.
[31] Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications J. Math. Biol 2016 1205 1226
,[32] Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery Int. J. Mech. Sci 2019 393 403
, ,[33] J. Mustard, H. Rowsell, E. Murphy, H. Downie and R.J. Jones, Evolution of Atherosclerotic Plaque. University of Chicago Press, IL, USA (1963).
[34] F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application to Hemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne, 2001.
[35] Bicuspid aortic valve aortopathies: an hemodynamics characterization in dilated aortas Comput. Method Biomech 2019 815 826
, , , , ,[36] Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications Vasc. Pharmacol 2016 1 7
,[37] PARDISO. 2018. www.pardiso-project.org
[38] An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization SIAM J. Sci. Comput 2014 139 162
, , ,[39] E. Qaja, P. Tadi and P. Theetha Kariyanna, Carotid Artery Stenosis. StatPearls, Treasure Island (FL), January (2020).
[40] Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm Int. J. Numer. Method Biomed. Eng 2012 697 713
, , ,[41] A new finite element formulation for computational fluid dynamics. X. The compressible Euler and Navier–Stokes equations Comput. Meth. Appl. Mech. Eng 1991 141 219
, ,[42] 3D MRI-based multicomponent FSI models for atherosclerotic plaques Ann. Biomed. Eng. 2004 947 960
, , , , , ,[43] Carotid atherosclerotic plaque alters the direction of longitudinal motion in the artery wall Ultrasound Med. Biol 2016 2114 2122
, ,[44] A.C. Ugural and S.K. Fenster, Advanced Strength and Applied Elasticity. Prentice-Hall, Upper Saddle River, NJ (1995).
[45] Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging J. Am. Coll. Cardiol 2005 846 854
, , , , , , ,[46] Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model BMC Cardiovasc. Disord 2012
, , , ,Cité par Sources :