A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 26.

Voir la notice de l'article provenant de la source EDP Sciences

Atherosclerosis, as a result of an inflammatory process, is the thickening and loss of elasticity of the walls of arteries that is associated with the formation of atherosclerotic plaques within the arterial intima, which present a double threat. A piece of vulnerable plaque can break off and be carried by the bloodstream until it gets stuck; and plaque that narrows an artery may lead to a thrombus that sticks to the blood vessel’s inner wall. The purpose of the present article is to compare effects across different atheromatous plaque material assumptions on hemodynamics and biomechanics within a partly patient-specific computational domain representing an atherosclerotic artery. A full scale 3D ESI numerical model is implemented and different material hyperelastic assumptions are considered for comparison purposes. The 3D realistic geometry is reconstructed from a medical image. This technique may be useful, specially with the recent advances in computer-aided design (CAD), medical imaging, and 3D printing technologies that have provided a rapid and cost efficient method to generate arterial stenotic biomodels, making in vitro studies a valuable and powerful tool. To understand our results, hemodynamic parameters and structural stress analysis were performed. The results are consistent with previous findings.
DOI : 10.1051/mmnp/2023014

Nader El Khatib 1 ; Oualid Kafi 2 ; Diana Oliveira 3 ; Adélia Sequeira 2, 4 ; Jorge Tiago 2, 4

1 Department of CS and Math., Lebanese American University, Byblos, Lebanon
2 CEMAT – Center for Computational and Stochastic Mathematics, Univ. Lisboa, Lisbon, Portugal
3 Department of Mechanical Engineering, University College London, London, UK
4 Department of Mathematics, Instituto Superior Técnico, Univ. Lisboa, Lisbon, Portugal
@article{MMNP_2023_18_a34,
     author = {Nader El Khatib and Oualid Kafi and Diana Oliveira and Ad\'elia Sequeira and Jorge Tiago},
     title = {A numerical {3D} fluid-structure interaction model for blood flow in a {MRI-based} atherosclerotic artery},
     journal = {Mathematical modelling of natural phenomena},
     eid = {26},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/}
}
TY  - JOUR
AU  - Nader El Khatib
AU  - Oualid Kafi
AU  - Diana Oliveira
AU  - Adélia Sequeira
AU  - Jorge Tiago
TI  - A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/
DO  - 10.1051/mmnp/2023014
LA  - en
ID  - MMNP_2023_18_a34
ER  - 
%0 Journal Article
%A Nader El Khatib
%A Oualid Kafi
%A Diana Oliveira
%A Adélia Sequeira
%A Jorge Tiago
%T A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/
%R 10.1051/mmnp/2023014
%G en
%F MMNP_2023_18_a34
Nader El Khatib; Oualid Kafi; Diana Oliveira; Adélia Sequeira; Jorge Tiago. A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 26. doi : 10.1051/mmnp/2023014. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/

[1] A. Andueza, S. Kumar, J. Kim, D.-W. Kang, H.L. Mumme, J.I. Perez, N. Villa-Roel, H. Jo Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study Cell Rep 2020 108491

[2] Y. Bazilevs, V.M. Calo, T.E. Tezduyar, T.J.R. Hughes Beta discontinuity capturing for advection-dominated processes with application to arterial drug delivery Int. J. Numer. Meth. Fluids 2007 593 608

[3] L. Bennati, C. Vergara, Μ. Domanin, C. Malloggi, D. Bissacco, S. Trimarchi, V. Silani, G. Parati, R. Casana A computational fluid-structure interaction study for carotids with different atherosclerotic plaques J. Biomech. Eng 2021

[4] S. Boujena, O. Kafl, N. El Khatib Generalized Navier-Stokes equations with non-standard conditions for blood flow in atherosclerotic artery Appl. Anal 2016 1645 1670

[5] A.N. Brooks, T.J.R. Hughes Streamline upwind/Petrov-Galerkin formulations for a convection dominated flows with a particular emphasis on the incompressible Navier-Stokes equations Comput. Meth. Appl. Mech. Eng 1982 199 259

[6] C.M. Buffinton, D.M. Ebenstein Effect of calcification modulus and geometry on stress in models of calcified atherosclerotic plaque Cardiovasc. Eng. Tech 2014 244 260

[7] Z. Chen, H. Qin, J. Liu, B. Wu, Z. Cheng, Y. Jiang, L. Liu, L. Jing, X. Leng, J. Jing, Y. Wang Characteristics of wall shear stress and pressure of intracranial atherosclerosis analyzed by a computational fluid dynamics model: a pilot study Front. Neurol 2020

[8] P.G. Ciarlet, Mathematical Elasticity. Vol. 1 of Three Dimensional Elasticity. North-Holland (1988).

[9] P. Crosetto, P. Raymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, A. Quarteroni Fluid-structure interaction simulations of physiological blood flow in the aorta Comput. Fluids 2011 46 57

[10] S.S. Dhawan, R.P. Avati Nanjundappa, J. R. Branch, W. Robert Taylor, A.A. Quyyumi, H. Jo, M.C. Mcdaniel, J. Suo, D. Giddens, H. Samady Shear stress and plaque development Expert Rev. Cardiovasc. Ther 2010 545 556

[11] P. Deuflhard A modified newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting Numer. Math 1974 289 315

[12] J. Donea, S. Giuliani, J.P. Halleux An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluidstructure interactions Comput. Methods Appl. Mech. Eng 1982 689 723

[13] N. El Khatib, Modélisation mathématique de l’athérosclérose. PhD thesis, Université Claude Bernard-Lyon 1, 2009.

[14] N. El Khatib, O. Kafl, J. Tiago, A. Sequeira Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery Math. Biosci. Eng 2017 179 193

[15] E. Raggiano, L. Formaggia and L. Antiga, An open-source tool for patient-specific fluid-structure vessel mesh generation. Fifth International Symposium on Modelling of Physiological Flows, Chia Laguna, Italy, 2013.

[16] A.Μ. Gambaruto, J. Janela, A. Moura, A. Sequeira Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology Math. Biosci. Eng 2011 409 423

[17] A. Gastounioti, S. Makrodimitris, S. Golemati, N.P.E. Kadoglou, C.D. Liapis, K.S. Nikita A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall IEEE J. Biomed. Health Inform 2015 1137 1145

[18] S. Golemati, E. Patelaki, A. Gastounioti, I. Andreadis, C.D. Liapis, K.S. Nikita Motion synchronisation patterns of the carotid atheromatous plaque from B-mode ultrasound Sci. Rep 2020 11221

[19] T. Guerra, A. Sequeira, J. Tiago Optimal control in blood flow simulations Int. J. Non-linear Meeh 2014 57 69

[20] G.K. Hansson, J. Nilsson Developing a vaccine against atherosclerosis Nat. Rev. Cardiol 2020 451 452

[21] G. Hauke, T.J.R. Hughes A unified approach to compressible and incompressible flows Comput. Meth. Appl. Mech. Eng 1994 389 395

[22] A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, C. Woodward Sundials: suite of non-linear and differential/algebraic equation solvers ACM Trans. Math. Softw 2005 363 396

[23] T.J.R. Hughes, W.K. Liu, T.K. Zimmermann Arbitrary Lagrangian-Eulerian finite element formulation for incompressible viscous flows Comput. Method Appl. Μ 1981 329 349

[24] J. Janela, A. Moura, A. Sequeira A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries J. Comput. Appl. Math 2010 2783 2791

[25] J. Janela, A. Moura, A. Sequeira Absorbing boundary conditions for a 3D non-Newtonian fluid-structure interaction model for blood flow in arteries Int. J. Eng. Sci 2010 1332 1349

[26] Y. Jiang, K. Kohara, K. Hiwada Association between risk factors for atherosclerosis and mechanical forces in carotid artery Stroke 2000 2319 2324

[27] D. Ku, D. Giddens, C. Zarins, S. Glagov Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress Arterioscler. Thromb. Vasc. Biol 1985 293 302

[28] Z.Y. Li, S. Howarth, R.A. Trivedi, J.Μ. U-King-Im, Μ.J. Graves, A. Brown, L. Wang, J.H. Gillard Stress analysis of carotid plaque rupture based on in vivo high resolution MRI J. Biomech 2006 2611 2622

[29] R.H. Mackey, L. Venkitachalam, K. Sutton-Tyrrell Calcifications, arterial stiffness and atherosclerosis Adv. Cardiol 2007 234 244

[30] J.B. Mendieta, D. Fontanarosa, J. Wang, K.P. Paritala, T. McGahan, T. Lloyd and Z. Li, The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech. Model Mechanobiol. (2020). https://doi.org/10.1007/sl0237-019-01282-7.

[31] C. Menichini, X. Yun Xu Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications J. Math. Biol 2016 1205 1226

[32] J. Moradicheghamahi, J. Sadeghiseraji, Μ. Jahangiri Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery Int. J. Mech. Sci 2019 393 403

[33] J. Mustard, H. Rowsell, E. Murphy, H. Downie and R.J. Jones, Evolution of Atherosclerotic Plaque. University of Chicago Press, IL, USA (1963).

[34] F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application to Hemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne, 2001.

[35] D. Oliveira, S. Aguiar Rosa, J. Tiago, R. Cruz Ferreira, A. Figueiredo Agapito, A. Sequeira Bicuspid aortic valve aortopathies: an hemodynamics characterization in dilated aortas Comput. Method Biomech 2019 815 826

[36] C. Palombo, Μ. Kozakova Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications Vasc. Pharmacol 2016 1 7

[37] PARDISO. 2018. www.pardiso-project.org

[38] C.G. Petra, O. Schenk, Μ. Lubin, K. Gäertner An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization SIAM J. Sci. Comput 2014 139 162

[39] E. Qaja, P. Tadi and P. Theetha Kariyanna, Carotid Artery Stenosis. StatPearls, Treasure Island (FL), January (2020).

[40] S. Ramalho, A. Moura, A. Gambaruto, A. Sequeira Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm Int. J. Numer. Method Biomed. Eng 2012 697 713

[41] F. Shakib, T.J.R. Hughes, Z. Johan A new finite element formulation for computational fluid dynamics. X. The compressible Euler and Navier–Stokes equations Comput. Meth. Appl. Mech. Eng 1991 141 219

[42] D. Tang, C. Yang, J. Zheng, P.K. Woodard, G.A. Sicard, J.E. Safìtz, C. Yuan 3D MRI-based multicomponent FSI models for atherosclerotic plaques Ann. Biomed. Eng. 2004 947 960

[43] J. Tat, L.N. Psaromiligkos, S.S. Daskalopoulou Carotid atherosclerotic plaque alters the direction of longitudinal motion in the artery wall Ultrasound Med. Biol 2016 2114 2122

[44] A.C. Ugural and S.K. Fenster, Advanced Strength and Applied Elasticity. Prentice-Hall, Upper Saddle River, NJ (1995).

[45] J.J. Wentzel, R. Corti, Z.A. Fayad, P. Wisdom, F. Macaluso, M.O. Winkelman, V. Fuster, J.J. Badimon Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging J. Am. Coll. Cardiol 2005 846 854

[46] K.K. Wong, P. Thavornpattanapong, S.C.P. Cheung, Z. Sun, J. Tu Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model BMC Cardiovasc. Disord 2012

Cité par Sources :