Nader El Khatib 1 ; Oualid Kafi 2 ; Diana Oliveira 3 ; Adélia Sequeira 2, 4 ; Jorge Tiago 2, 4
@article{10_1051_mmnp_2023014,
author = {Nader El Khatib and Oualid Kafi and Diana Oliveira and Ad\'elia Sequeira and Jorge Tiago},
title = {A numerical {3D} fluid-structure interaction model for blood flow in a {MRI-based} atherosclerotic artery},
journal = {Mathematical modelling of natural phenomena},
eid = {26},
year = {2023},
volume = {18},
doi = {10.1051/mmnp/2023014},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/}
}
TY - JOUR AU - Nader El Khatib AU - Oualid Kafi AU - Diana Oliveira AU - Adélia Sequeira AU - Jorge Tiago TI - A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/ DO - 10.1051/mmnp/2023014 LA - en ID - 10_1051_mmnp_2023014 ER -
%0 Journal Article %A Nader El Khatib %A Oualid Kafi %A Diana Oliveira %A Adélia Sequeira %A Jorge Tiago %T A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery %J Mathematical modelling of natural phenomena %D 2023 %V 18 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023014/ %R 10.1051/mmnp/2023014 %G en %F 10_1051_mmnp_2023014
Nader El Khatib; Oualid Kafi; Diana Oliveira; Adélia Sequeira; Jorge Tiago. A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 26. doi: 10.1051/mmnp/2023014
[1] , , , , , , , Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study Cell Rep 2020 108491
[2] , , , Beta discontinuity capturing for advection-dominated processes with application to arterial drug delivery Int. J. Numer. Meth. Fluids 2007 593 608
[3] , , , , , , , , A computational fluid-structure interaction study for carotids with different atherosclerotic plaques J. Biomech. Eng 2021
[4] , , Generalized Navier-Stokes equations with non-standard conditions for blood flow in atherosclerotic artery Appl. Anal 2016 1645 1670
[5] , Streamline upwind/Petrov-Galerkin formulations for a convection dominated flows with a particular emphasis on the incompressible Navier-Stokes equations Comput. Meth. Appl. Mech. Eng 1982 199 259
[6] , Effect of calcification modulus and geometry on stress in models of calcified atherosclerotic plaque Cardiovasc. Eng. Tech 2014 244 260
[7] , , , , , , , , , , Characteristics of wall shear stress and pressure of intracranial atherosclerosis analyzed by a computational fluid dynamics model: a pilot study Front. Neurol 2020
[8] P.G. Ciarlet, Mathematical Elasticity. Vol. 1 of Three Dimensional Elasticity. North-Holland (1988).
[9] , , , , , Fluid-structure interaction simulations of physiological blood flow in the aorta Comput. Fluids 2011 46 57
[10] , , , , , , , , , Shear stress and plaque development Expert Rev. Cardiovasc. Ther 2010 545 556
[11] A modified newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting Numer. Math 1974 289 315
[12] , , An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluidstructure interactions Comput. Methods Appl. Mech. Eng 1982 689 723
[13] N. El Khatib, Modélisation mathématique de l’athérosclérose. PhD thesis, Université Claude Bernard-Lyon 1, 2009.
[14] , , , Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery Math. Biosci. Eng 2017 179 193
[15] E. Raggiano, L. Formaggia and L. Antiga, An open-source tool for patient-specific fluid-structure vessel mesh generation. Fifth International Symposium on Modelling of Physiological Flows, Chia Laguna, Italy, 2013.
[16] , , , Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology Math. Biosci. Eng 2011 409 423
[17] , , , , , A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall IEEE J. Biomed. Health Inform 2015 1137 1145
[18] , , , , , Motion synchronisation patterns of the carotid atheromatous plaque from B-mode ultrasound Sci. Rep 2020 11221
[19] , , Optimal control in blood flow simulations Int. J. Non-linear Meeh 2014 57 69
[20] , Developing a vaccine against atherosclerosis Nat. Rev. Cardiol 2020 451 452
[21] , A unified approach to compressible and incompressible flows Comput. Meth. Appl. Mech. Eng 1994 389 395
[22] , , , , , , Sundials: suite of non-linear and differential/algebraic equation solvers ACM Trans. Math. Softw 2005 363 396
[23] , , Arbitrary Lagrangian-Eulerian finite element formulation for incompressible viscous flows Comput. Method Appl. Μ 1981 329 349
[24] , , A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries J. Comput. Appl. Math 2010 2783 2791
[25] , , Absorbing boundary conditions for a 3D non-Newtonian fluid-structure interaction model for blood flow in arteries Int. J. Eng. Sci 2010 1332 1349
[26] , , Association between risk factors for atherosclerosis and mechanical forces in carotid artery Stroke 2000 2319 2324
[27] , , , Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress Arterioscler. Thromb. Vasc. Biol 1985 293 302
[28] , , , , , , , Stress analysis of carotid plaque rupture based on in vivo high resolution MRI J. Biomech 2006 2611 2622
[29] , , Calcifications, arterial stiffness and atherosclerosis Adv. Cardiol 2007 234 244
[30] J.B. Mendieta, D. Fontanarosa, J. Wang, K.P. Paritala, T. McGahan, T. Lloyd and Z. Li, The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech. Model Mechanobiol. (2020). https://doi.org/10.1007/sl0237-019-01282-7.
[31] , Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications J. Math. Biol 2016 1205 1226
[32] , , Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery Int. J. Mech. Sci 2019 393 403
[33] J. Mustard, H. Rowsell, E. Murphy, H. Downie and R.J. Jones, Evolution of Atherosclerotic Plaque. University of Chicago Press, IL, USA (1963).
[34] F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application to Hemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne, 2001.
[35] , , , , , Bicuspid aortic valve aortopathies: an hemodynamics characterization in dilated aortas Comput. Method Biomech 2019 815 826
[36] , Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications Vasc. Pharmacol 2016 1 7
[37] PARDISO. 2018. www.pardiso-project.org
[38] , , , An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization SIAM J. Sci. Comput 2014 139 162
[39] E. Qaja, P. Tadi and P. Theetha Kariyanna, Carotid Artery Stenosis. StatPearls, Treasure Island (FL), January (2020).
[40] , , , Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm Int. J. Numer. Method Biomed. Eng 2012 697 713
[41] , , A new finite element formulation for computational fluid dynamics. X. The compressible Euler and Navier–Stokes equations Comput. Meth. Appl. Mech. Eng 1991 141 219
[42] , , , , , , 3D MRI-based multicomponent FSI models for atherosclerotic plaques Ann. Biomed. Eng. 2004 947 960
[43] , , Carotid atherosclerotic plaque alters the direction of longitudinal motion in the artery wall Ultrasound Med. Biol 2016 2114 2122
[44] A.C. Ugural and S.K. Fenster, Advanced Strength and Applied Elasticity. Prentice-Hall, Upper Saddle River, NJ (1995).
[45] , , , , , , , Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging J. Am. Coll. Cardiol 2005 846 854
[46] , , , , Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model BMC Cardiovasc. Disord 2012
Cité par Sources :