On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 14.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we investigate the convergence of the Faedo-Galerkin approximations, in a strong sense, to a strong T-periodic solution of the torso-coupled bidomain model where T is the period of activation of the inner wall of the heart. First, we define the torso-coupled bidomain operator and prove some of its more important properties for our work. After, we define the abstract evolution system of the equations that are associated with torso-coupled bidomain model and give the definition of a strong solution. We prove that the Faedo-Galerkin’s approximations have the regularity of a strong solution, and we find that some restrictions can be imposed over the initial conditions, so that this sequence of Faedo-Galerkin fully converges to a strong solution of the Cauchy problem. Finally, these results are used for showing the existence a strong T-periodic solution.
DOI : 10.1051/mmnp/2023012

Raul Felipe-Sosa 1 ; Andres Fraguela-Collar 2 ; Yofre H. García-Gómez 1

1 Facultad de Ciencias en Física y Matemáticas-UNACH, Chiapas, Mexico
2 Facultad de Ciencias Físico Matemáticas-BUAP, Puebla, Mexico
@article{MMNP_2023_18_a29,
     author = {Raul Felipe-Sosa and Andres Fraguela-Collar and Yofre H. Garc{\'\i}a-G\'omez},
     title = {On the strong convergence of the {Faedo-Galerkin} approximations to a strong {T-periodic} solution of the torso-coupled bidomain model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {14},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/}
}
TY  - JOUR
AU  - Raul Felipe-Sosa
AU  - Andres Fraguela-Collar
AU  - Yofre H. García-Gómez
TI  - On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/
DO  - 10.1051/mmnp/2023012
LA  - en
ID  - MMNP_2023_18_a29
ER  - 
%0 Journal Article
%A Raul Felipe-Sosa
%A Andres Fraguela-Collar
%A Yofre H. García-Gómez
%T On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/
%R 10.1051/mmnp/2023012
%G en
%F MMNP_2023_18_a29
Raul Felipe-Sosa; Andres Fraguela-Collar; Yofre H. García-Gómez. On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 14. doi : 10.1051/mmnp/2023012. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/

[1] R.R. Aliev, A.V. Panfilov A simple two-variable model of cardiac excitation Chaos Solitons Fractals 1996 293 301

[2] J.D. Bayer, R.C. Blake, G. Plank, N.A. Trayanova A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models Ann. Biomed. Eng. 2012 2243 2254

[3] M. Boulakia, S. Cazeau, M.A. Fernández Mathematical modeling of electrocardiograms: a numerical study Ann. Biomed. Eng. 2010 1071 1097

[4] Y. Bourgault, Y. Coudière, C. Pierre Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology Nonlinear Anal., Real World Appl. 2009 458 482

[5] M. Bucelli, M. Salvador, L. Dede, A. Quarteroni Multipatch isogeometric analysis for electrophysiology: simulation in a human heart Comput. Methods Appl. Mech. Eng. 2021 113666

[6] P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level. In: A. Lorenzi, B. Ruf (eds.), Evolution Equations, Semigroups and Functional Analysis: In Memory of Brunello Terreni, vol. 50. Birkhäuser, Basel (2002), pp. 49–78.

[7] P. Colli Franzone, L. Guerri, S. Tentoni Mathematical modeling of the excitation process in myocardial tissue: Infiuence of fiber rotation on wavefront propagation and potential field Math. Biosci. 1990 155 235

[8] R. Fitzhugh Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1961 445 465

[9] A. Fraguela, R. Felipe-Sosa, J. Henry, M.F. Márquez Existence of a T-periodic solution for the monodomain model corresponding to an isolated ventricle due to ionic-diffusive relations Acta Appl. Math. 2022

[10] Y. Giga, N. Kajiwara, K. Kress Strong time-periodic solutions to the bidomain equations with arbitrary large forces Nonlinear Anal., Real World Appl. 2019 398 413

[11] D. Henry, Geometric theory of semilinear parabolic equations, LNM, vol. 840, Springer-Verlag (1981).

[12] O. Hernandez, A. Fraguela, R. Felipe-Sosa Existence of global solutions in a model of electrical activity of the monodomain type for a ventricle Nova Scientia 2018 17

[13] M. Hieber, N. Kajiwara, K. Kress and P. Tolksdorf, The periodic version of the Da Prato-Grisvard theorem and applications to the bidomain equations with FitzHugh-Nagumo transport. Ann. Mat. Pura Appl. (2020). https://doi.org/10.1007/s10231-020-00975-6.

[14] J. Keener and J. Sneyd, Mathematical Physiology. Springer, Berlin (1998).

[15] J.L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires. Paris, Dunod (1969).

[16] C. Luo, Y. Rudy A model of the ventricular cardiac action potential Circ. Res. 1991 1501 1526

[17] Y. Mori A multidomain model for ionic electrodiffusion and osmosis with an application to cortical spreading depression Physica D: Nonlinear Phenomena 2015 94 108

[18] R. O’Connell, Y. Mori Effects of glia in a triphasic continuum model of cortical spreading depression Bull. Math. Biol. 2016 1943 1967

[19] A. Panfilov and A. Holden, Computational Biology of the Heart. Wiley, New York (1997).

[20] P.A. Raviart and J.M. Thomas, Introduction ál’analyse numriéque des équations aux dérivées partielles, Masson (1988).

[21] T. Rubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser Verlag, Basel (2005).

[22] J.M. Rogers, A.D. Mcculloch A collocation-Galerkin finite element model of cardiac action potential propagation IEEE Trans. Biomed. Eng. 1994 743 757

[23] J. Sneyd, M. Falcke, V. Kirk and G. Dupont, Models of Calcium Signalling. Springer (2016).

[24] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Monographs in Computational Science and Engineering. Springer-Verlag, Berlin, Heidelberg (2006).

[25] L. Tung, A bidomain model for describing ischemic myocardial D-C potentials. Ph.D. dissertation, Massachusetts Inst. Technol, Cambridge, MA (1978).

[26] M. Veneroni Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field Nonlinear Anal., Real World Appl. 2009 849 868

Cité par Sources :