On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 14 Cet article a éte moissonné depuis la source EDP Sciences

Voir la notice de l'article

In this paper, we investigate the convergence of the Faedo-Galerkin approximations, in a strong sense, to a strong T-periodic solution of the torso-coupled bidomain model where T is the period of activation of the inner wall of the heart. First, we define the torso-coupled bidomain operator and prove some of its more important properties for our work. After, we define the abstract evolution system of the equations that are associated with torso-coupled bidomain model and give the definition of a strong solution. We prove that the Faedo-Galerkin’s approximations have the regularity of a strong solution, and we find that some restrictions can be imposed over the initial conditions, so that this sequence of Faedo-Galerkin fully converges to a strong solution of the Cauchy problem. Finally, these results are used for showing the existence a strong T-periodic solution.
DOI : 10.1051/mmnp/2023012

Raul Felipe-Sosa  1   ; Andres Fraguela-Collar  2   ; Yofre H. García-Gómez  1

1 Facultad de Ciencias en Física y Matemáticas-UNACH, Chiapas, Mexico
2 Facultad de Ciencias Físico Matemáticas-BUAP, Puebla, Mexico
@article{10_1051_mmnp_2023012,
     author = {Raul Felipe-Sosa and Andres Fraguela-Collar and Yofre H. Garc{\'\i}a-G\'omez},
     title = {On the strong convergence of the {Faedo-Galerkin} approximations to a strong {T-periodic} solution of the torso-coupled bidomain model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {14},
     year = {2023},
     volume = {18},
     doi = {10.1051/mmnp/2023012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/}
}
TY  - JOUR
AU  - Raul Felipe-Sosa
AU  - Andres Fraguela-Collar
AU  - Yofre H. García-Gómez
TI  - On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/
DO  - 10.1051/mmnp/2023012
LA  - en
ID  - 10_1051_mmnp_2023012
ER  - 
%0 Journal Article
%A Raul Felipe-Sosa
%A Andres Fraguela-Collar
%A Yofre H. García-Gómez
%T On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/
%R 10.1051/mmnp/2023012
%G en
%F 10_1051_mmnp_2023012
Raul Felipe-Sosa; Andres Fraguela-Collar; Yofre H. García-Gómez. On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 14. doi: 10.1051/mmnp/2023012

[1] R.R. Aliev, A.V. Panfilov A simple two-variable model of cardiac excitation Chaos Solitons Fractals 1996 293 301

[2] J.D. Bayer, R.C. Blake, G. Plank, N.A. Trayanova A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models Ann. Biomed. Eng. 2012 2243 2254

[3] M. Boulakia, S. Cazeau, M.A. Fernández Mathematical modeling of electrocardiograms: a numerical study Ann. Biomed. Eng. 2010 1071 1097

[4] Y. Bourgault, Y. Coudière, C. Pierre Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology Nonlinear Anal., Real World Appl. 2009 458 482

[5] M. Bucelli, M. Salvador, L. Dede, A. Quarteroni Multipatch isogeometric analysis for electrophysiology: simulation in a human heart Comput. Methods Appl. Mech. Eng. 2021 113666

[6] P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level. In: A. Lorenzi, B. Ruf (eds.), Evolution Equations, Semigroups and Functional Analysis: In Memory of Brunello Terreni, vol. 50. Birkhäuser, Basel (2002), pp. 49–78.

[7] P. Colli Franzone, L. Guerri, S. Tentoni Mathematical modeling of the excitation process in myocardial tissue: Infiuence of fiber rotation on wavefront propagation and potential field Math. Biosci. 1990 155 235

[8] R. Fitzhugh Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1961 445 465

[9] A. Fraguela, R. Felipe-Sosa, J. Henry, M.F. Márquez Existence of a T-periodic solution for the monodomain model corresponding to an isolated ventricle due to ionic-diffusive relations Acta Appl. Math. 2022

[10] Y. Giga, N. Kajiwara, K. Kress Strong time-periodic solutions to the bidomain equations with arbitrary large forces Nonlinear Anal., Real World Appl. 2019 398 413

[11] D. Henry, Geometric theory of semilinear parabolic equations, LNM, vol. 840, Springer-Verlag (1981).

[12] O. Hernandez, A. Fraguela, R. Felipe-Sosa Existence of global solutions in a model of electrical activity of the monodomain type for a ventricle Nova Scientia 2018 17

[13] M. Hieber, N. Kajiwara, K. Kress and P. Tolksdorf, The periodic version of the Da Prato-Grisvard theorem and applications to the bidomain equations with FitzHugh-Nagumo transport. Ann. Mat. Pura Appl. (2020). https://doi.org/10.1007/s10231-020-00975-6.

[14] J. Keener and J. Sneyd, Mathematical Physiology. Springer, Berlin (1998).

[15] J.L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires. Paris, Dunod (1969).

[16] C. Luo, Y. Rudy A model of the ventricular cardiac action potential Circ. Res. 1991 1501 1526

[17] Y. Mori A multidomain model for ionic electrodiffusion and osmosis with an application to cortical spreading depression Physica D: Nonlinear Phenomena 2015 94 108

[18] R. O’Connell, Y. Mori Effects of glia in a triphasic continuum model of cortical spreading depression Bull. Math. Biol. 2016 1943 1967

[19] A. Panfilov and A. Holden, Computational Biology of the Heart. Wiley, New York (1997).

[20] P.A. Raviart and J.M. Thomas, Introduction ál’analyse numriéque des équations aux dérivées partielles, Masson (1988).

[21] T. Rubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser Verlag, Basel (2005).

[22] J.M. Rogers, A.D. Mcculloch A collocation-Galerkin finite element model of cardiac action potential propagation IEEE Trans. Biomed. Eng. 1994 743 757

[23] J. Sneyd, M. Falcke, V. Kirk and G. Dupont, Models of Calcium Signalling. Springer (2016).

[24] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Monographs in Computational Science and Engineering. Springer-Verlag, Berlin, Heidelberg (2006).

[25] L. Tung, A bidomain model for describing ischemic myocardial D-C potentials. Ph.D. dissertation, Massachusetts Inst. Technol, Cambridge, MA (1978).

[26] M. Veneroni Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field Nonlinear Anal., Real World Appl. 2009 849 868

Cité par Sources :