Voir la notice de l'article provenant de la source EDP Sciences
Raul Felipe-Sosa 1 ; Andres Fraguela-Collar 2 ; Yofre H. García-Gómez 1
@article{MMNP_2023_18_a29, author = {Raul Felipe-Sosa and Andres Fraguela-Collar and Yofre H. Garc{\'\i}a-G\'omez}, title = {On the strong convergence of the {Faedo-Galerkin} approximations to a strong {T-periodic} solution of the torso-coupled bidomain model}, journal = {Mathematical modelling of natural phenomena}, eid = {14}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023012}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/} }
TY - JOUR AU - Raul Felipe-Sosa AU - Andres Fraguela-Collar AU - Yofre H. García-Gómez TI - On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/ DO - 10.1051/mmnp/2023012 LA - en ID - MMNP_2023_18_a29 ER -
%0 Journal Article %A Raul Felipe-Sosa %A Andres Fraguela-Collar %A Yofre H. García-Gómez %T On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/ %R 10.1051/mmnp/2023012 %G en %F MMNP_2023_18_a29
Raul Felipe-Sosa; Andres Fraguela-Collar; Yofre H. García-Gómez. On the strong convergence of the Faedo-Galerkin approximations to a strong T-periodic solution of the torso-coupled bidomain model. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 14. doi : 10.1051/mmnp/2023012. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023012/
[1] A simple two-variable model of cardiac excitation Chaos Solitons Fractals 1996 293 301
,[2] A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models Ann. Biomed. Eng. 2012 2243 2254
, , ,[3] Mathematical modeling of electrocardiograms: a numerical study Ann. Biomed. Eng. 2010 1071 1097
, ,[4] Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology Nonlinear Anal., Real World Appl. 2009 458 482
, ,[5] Multipatch isogeometric analysis for electrophysiology: simulation in a human heart Comput. Methods Appl. Mech. Eng. 2021 113666
, , ,[6] P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level. In: A. Lorenzi, B. Ruf (eds.), Evolution Equations, Semigroups and Functional Analysis: In Memory of Brunello Terreni, vol. 50. Birkhäuser, Basel (2002), pp. 49–78.
[7] Mathematical modeling of the excitation process in myocardial tissue: Infiuence of fiber rotation on wavefront propagation and potential field Math. Biosci. 1990 155 235
, ,[8] Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1961 445 465
[9] Existence of a T-periodic solution for the monodomain model corresponding to an isolated ventricle due to ionic-diffusive relations Acta Appl. Math. 2022
, , ,[10] Strong time-periodic solutions to the bidomain equations with arbitrary large forces Nonlinear Anal., Real World Appl. 2019 398 413
, ,[11] D. Henry, Geometric theory of semilinear parabolic equations, LNM, vol. 840, Springer-Verlag (1981).
[12] Existence of global solutions in a model of electrical activity of the monodomain type for a ventricle Nova Scientia 2018 17
, ,[13] M. Hieber, N. Kajiwara, K. Kress and P. Tolksdorf, The periodic version of the Da Prato-Grisvard theorem and applications to the bidomain equations with FitzHugh-Nagumo transport. Ann. Mat. Pura Appl. (2020). https://doi.org/10.1007/s10231-020-00975-6.
[14] J. Keener and J. Sneyd, Mathematical Physiology. Springer, Berlin (1998).
[15] J.L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires. Paris, Dunod (1969).
[16] A model of the ventricular cardiac action potential Circ. Res. 1991 1501 1526
,[17] A multidomain model for ionic electrodiffusion and osmosis with an application to cortical spreading depression Physica D: Nonlinear Phenomena 2015 94 108
[18] Effects of glia in a triphasic continuum model of cortical spreading depression Bull. Math. Biol. 2016 1943 1967
,[19] A. Panfilov and A. Holden, Computational Biology of the Heart. Wiley, New York (1997).
[20] P.A. Raviart and J.M. Thomas, Introduction ál’analyse numriéque des équations aux dérivées partielles, Masson (1988).
[21] T. Rubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser Verlag, Basel (2005).
[22] A collocation-Galerkin finite element model of cardiac action potential propagation IEEE Trans. Biomed. Eng. 1994 743 757
,[23] J. Sneyd, M. Falcke, V. Kirk and G. Dupont, Models of Calcium Signalling. Springer (2016).
[24] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Monographs in Computational Science and Engineering. Springer-Verlag, Berlin, Heidelberg (2006).
[25] L. Tung, A bidomain model for describing ischemic myocardial D-C potentials. Ph.D. dissertation, Massachusetts Inst. Technol, Cambridge, MA (1978).
[26] Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field Nonlinear Anal., Real World Appl. 2009 849 868
Cité par Sources :