Qualitative analysis for a diffusive predator-prey model with hunting cooperation and holling type III functional response
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 13.

Voir la notice de l'article provenant de la source EDP Sciences

The Spatio-temporal pattern induced by self-diffusion of a predator-prey model with Boiling type III functional response that incorporates the hunting cooperation between predators has been investigated in this paper. For the local model without structure, the stability of non-negative equilibria with or without collaborative hunting in predators is studied. For the Spatio-temporal model, we analyze the effect of hunting cooperation term on diffusion-driven Turing instability of the homogeneous positive equilibria. To get an idea about patterns formation near the Turing bifurcation, we derive and give a detailed study of the amplitude equation using the multiple-scale analysis. Our result shows that hunting cooperation plays a crucial role in determining the stability and the Turing bifurcation of the model, which is in sharp contrast to the case without cooperation in hunting. Furthermore, some numerical simulations are illustrated to visualize the complex dynamic behavior of the model.
DOI : 10.1051/mmnp/2023010

Ibtissam Benamara 1 ; Abderrahim El Abdllaoui 1 ; Radouane Yafia 2 ; Hemen Dutta 3

1 Laboratory of Mathematics, Computer Science and Applications-Security of Information, Department of Mathematics, Faculty of Sciences, Mohammed V University, Rabat, Morocco
2 Department of Mathematics Faculty of Sciences, Ibn Tofail University, Campus Universitaire, BP 133, Kénitra, Morocco
3 Department of Mathematics, Gauhati University, Gawahati, 781 014 Assam, India
@article{MMNP_2023_18_a18,
     author = {Ibtissam Benamara and Abderrahim El Abdllaoui and Radouane Yafia and Hemen Dutta},
     title = {Qualitative analysis for a diffusive predator-prey model with hunting cooperation and holling type {III} functional response},
     journal = {Mathematical modelling of natural phenomena},
     eid = {13},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023010/}
}
TY  - JOUR
AU  - Ibtissam Benamara
AU  - Abderrahim El Abdllaoui
AU  - Radouane Yafia
AU  - Hemen Dutta
TI  - Qualitative analysis for a diffusive predator-prey model with hunting cooperation and holling type III functional response
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023010/
DO  - 10.1051/mmnp/2023010
LA  - en
ID  - MMNP_2023_18_a18
ER  - 
%0 Journal Article
%A Ibtissam Benamara
%A Abderrahim El Abdllaoui
%A Radouane Yafia
%A Hemen Dutta
%T Qualitative analysis for a diffusive predator-prey model with hunting cooperation and holling type III functional response
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023010/
%R 10.1051/mmnp/2023010
%G en
%F MMNP_2023_18_a18
Ibtissam Benamara; Abderrahim El Abdllaoui; Radouane Yafia; Hemen Dutta. Qualitative analysis for a diffusive predator-prey model with hunting cooperation and holling type III functional response. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 13. doi : 10.1051/mmnp/2023010. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023010/

[1] W. Abid, R. Yafia, M. Aziz-Alaoui, A. Aghriche Turing instability and Hopf bifurcation in a modified Leslie-Gower predator-prey model with cross-diffusion. Int. J Bifurc. Chaos 2018 1850089

[2] M.T. Alves, F.M. Hilker Hunting cooperation and Allee effects in predators J. Theor. Biol. 2017 13 22

[3] L. Berec Impacts of foraging facilitation among predators on predator-prey dynamics Bull. Math. Biol. 2010 94 121

[4] C. Boesch Cooperative hunting in wild chimpanzees Animal Behav. 1994 653 667

[5] B.I. Camara, M. Aziz-Alaoui Dynamics of a predator-prey model with diffusion Dyn. Continu. Discr. Impulsive Syst. Ser. A 2008 897 906

[6] B.I. Camara, M. Aziz-Alaoui Turing and Hopf patterns formation in a predator-prey model with Leslie-Gower-type functional response Dyn. Continu. Discr. Impulsive Syst. Ser. B 2009 479 488

[7] F. Capone, M.F. Carfora, R. De Luca, I. Torcicollo Turing patterns in a reaction-diffusion system modeling hunting cooperation Math. Comput. Simul. 2019 172 180

[8] Y. Chow S.R.-J. Jang and H.-M. Wang, Cooperative hunting in a discrete predator-prey system II J. Biolog. Dyn. 2019 247 264

[9] S. Creel, D. Christianson Relationships between direct predation and risk effects Trends Ecol. Evol. 2008 194 201

[10] S. Creel, D. Christianson, S. Liley, J.A. Winnie Jr Predation risk affects reproductive physiology and demography of elk Science 2007 960 960

[11] W. Cresswell Predation in bird populations J. Ornithol. 2011 251 263

[12] D.P. Hector Cooperative hunting and its relationship to foraging success and prey size in an avian predator Ethology 1986 247 257

[13] S.R.-J. Jang, W. Zhang, V. Larriva Cooperative hunting in a predator-prey system with Allee effects in the prey Nat. Resource Model. 2018 e12194

[14] W.-T. Li, S.-L. Wu Traveling waves in a diffusive predator-prey model with Holling type-III functional response Chaos Solitons Fract. 2008 476 486

[15] Y. Lou, W.-M. Ni Diffusion, self-diffusion and cross-diffusion J. Differ. Equ. 1996 79 131

[16] D.W. Macdonald The ecology of carnivore social behaviour Nature 1983 379 384

[17] N. Mukherjee, M. Banerjee Hunting cooperation among slowly diffusing specialist predators can induce stationary Turing patterns Physica A 2022 127417

[18] J.D. Murray Discussion: Turing’s theory of morphogenesis—its influence on modelling biological pattern and form Bull. Math. Biol. 1990 117 152

[19] J.D. Murray, Vol. 3 of Mathematical biology II: spatial models and biomedical applications. Springer New York (2001).

[20] A. Narcisa, D. Gabriel On a prey—predator reaction—diffusion system with Holling type III functional response J. Comput. Appl. Math. 2010

[21]

[22] Q. Ouyang, Pattern Formation in Reaction-Diffusion Systems. Shanghai Sci. Edu. Press, Shanghai (2000).

[23] Q. Ouyang, Nonlinear science and the pattern dynamics introduction. Peking University Press, Beijing (2010).

[24] C. Packer, D. Scheel, A.E. Pusey Why lions form groups: food is not enough Am. Natural. 1990 1 19

[25] S. Pal, N. Pal, J. Chattopadhyay Hunting cooperation in a discrete-time predator-prey system Int. J. Bifurc. Chaos 2018 1850083

[26] U.D. Sheng Chen, U.C. Tauber Evolutionary dynamics and competition stabilize three-species predator—prey communities Ecol. Complex. 2018 57 72

[27] T.Z. Shengqiang Zhang, S. Yuan Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation Ecol. Complex. 2021 100889

[28] T. Singh, S. Banerjee Spatial aspect of hunting cooperation in predators with Holling type II functional response J. Biol. Syst. 2018 511 531

[29] T. Singh, R. Dubey, V.N. Mishra Spatial dynamics of predator-prey system with hunting cooperation in predators and type I functional response AIMS Math. 2019 673 684

[30] A. Turing Philosophical the royal biological transqfctions society sciences Phil. Trans. R. Soc. Lond. B 1952 37 72

[31] G.W. Uetz Foraging strategies of spiders Trends Ecol. Evol. 1992 155 159

[32] E. Venturino, S. Petrovskii Spatiotemporal behavior of a prey-predator system with a group defense for prey Ecol. Complex. 2013 37 47

[33] D. Wu, M. Zhao Qualitative analysis for a diffusive predator-prey model with hunting cooperative Physica A 2019 299 309

[34] R. Yadav, N. Mukherjee, M. Sen Spatiotemporal dynamics of a prey-predator model with Allee effect in prey and hunting cooperation in a Holling type III functional response Nonlinear Dyn. 2022 1397 1410

[35] E.P. Zemskov, V.K. Vanag, I.R. Epstein Amplitude equations for reaction-diffusion systems with cross diffusion Phys. Rev. E 2011 036216

Cité par Sources :