Bjarke Spangsberg Bak  1 ; Morten Andersen  1 ; Johnny T. Ottesen  1 ; J.S. Hansen  1
@article{10_1051_mmnp_2023007,
author = {Bjarke Spangsberg Bak and Morten Andersen and Johnny T. Ottesen and J.S. Hansen},
title = {How do cell crowding and starvation affect avascular tumor growth of the {EMT6/Ro} tumor?},
journal = {Mathematical modelling of natural phenomena},
eid = {8},
year = {2023},
volume = {18},
doi = {10.1051/mmnp/2023007},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023007/}
}
TY - JOUR AU - Bjarke Spangsberg Bak AU - Morten Andersen AU - Johnny T. Ottesen AU - J.S. Hansen TI - How do cell crowding and starvation affect avascular tumor growth of the EMT6/Ro tumor? JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023007/ DO - 10.1051/mmnp/2023007 LA - en ID - 10_1051_mmnp_2023007 ER -
%0 Journal Article %A Bjarke Spangsberg Bak %A Morten Andersen %A Johnny T. Ottesen %A J.S. Hansen %T How do cell crowding and starvation affect avascular tumor growth of the EMT6/Ro tumor? %J Mathematical modelling of natural phenomena %D 2023 %V 18 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023007/ %R 10.1051/mmnp/2023007 %G en %F 10_1051_mmnp_2023007
Bjarke Spangsberg Bak; Morten Andersen; Johnny T. Ottesen; J.S. Hansen. How do cell crowding and starvation affect avascular tumor growth of the EMT6/Ro tumor?. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 8. doi: 10.1051/mmnp/2023007
[1] , , , , 3D tumour spheroids for the prediction of the effects of radiation and hyperthermia treatments 2020 1
[2] Rate of growth of solid tumors as a problem of diffusion 1966 157
[3] Dissecting cancer through mathematics: from the cell to animal model 2010 221
[4] H.M. Byrne, Mathematical biomedicine and modeling avascular tumor growth. In A.V. Antoniouk and A.R.V. Melnik, editors, Mathematics and Life Sciences, chapter 12, page 279. De Groyter, Germany (2012).
[5] S.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics. Dover Publications (1984).
[6] , Indvividual-based approach to birth and death in avascular tumors 2003 1163
[7] J.H. Ferziger and M. Perić, Computational methods for fluid dynamics. Springer-Verlag, Berlin (2002).
[8] , Prolifirative and clonogenic heterogeneity of cells from EMT6/Ro multicellular spheroids induced by the glucose and oxygen supply 1986 3513
[9] , Regulation of growth saturation and development of necrosis inEMT6/Ro milticellular spheroids by the glucose and oxygen supply 1986 3504
[10] The model muddle: In search of tumor growth laws 2003 2407
[11] P. Gray and S.K. Scott, Chemical Oscillations and Instabilities:Non-linear Chemical Kinetics. Clarendon Press, Oxford (1994).
[12] Models for growth of a solid tumor by diffusion 1972 317
[13] P. Grindrod, Patterns and Waves. Oxford University Press, New York (1991).
[14] G. Hochman, Y. Kogan, V. Vainstein, O. Shukron, A. Lankenau, B. Boysen, R. Lamb, T. Berkman, R. Clarke, C. Duschl and Z. Agur, Evidence for power law tumor growth and implications for cancer radiotherapy (2012).
[15] , , , A multiscale model for avascular tumor growth 2005 3884
[16] On a law of growth of Jensen’s rat sarcoma 1932 841
[17] , , Influence of glucose and oxygen supply conditions oxygenation ofmulticellular spheroids 1986 345
[18] J.D. Murray, Mathematical Biology. Springer Verlag (1989).
[19] , An agent-based model of cancer stem cell initiated avasclular tumorgrowth and metastasis: the effect of seeding frequency and location 2017 20140640
[20] Cancer Res 1986 3504
[21] , , Analysis of tumor growth curves 1968 389
[22] , , Fractal dimension and universality in avascular tumor growth 2017 042406
[23] , , Mathematical models of avascular tumor growth 2007 179
[24] , , Stochastic modelling of avascular tumor growth and therapy 2011 045801
[25] , Mathematical modelling of avascular-tumour growth 1997 39
[26] , Mathematical modelling of avascular-tumour growth II: Modelling growth saturation 1999 171
Cité par Sources :