How do cell crowding and starvation affect avascular tumor growth of the EMT6/Ro tumor?
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 8.

Voir la notice de l'article provenant de la source EDP Sciences

Here we re-examine experimental in vitro data for the EMT6/Ro tumor volume and viable rim thickness. This shows that the growth speed is constant in time, and independent of nutrient concentration at large concentrations, but that the viable rim thickness increases in this high concentration regime. We then present a simple mechanistic reaction-diffusion equation that includes crowding and starvation effects, and show that the model qualitatively captures the experimental observations. Moreover, the model predicts that the cancer cell concentration is characterised by a wave pulse (soliton), and the pulse shape is explored through zero’th order perturbation analysis corresponding to large wave speeds. It is shown that this zero’th order term is dominant for the experimental condition, further indicating that the non-linear reaction governs the pulse characteristic shape. Finally, at low nutrient concentrations we find that the front is a pulled-front, that is, the growth speed is determined by the cell multiplication at the wave front edge in accordance with earlier modelling approaches.
DOI : 10.1051/mmnp/2023007

Bjarke Spangsberg Bak 1 ; Morten Andersen 1 ; Johnny T. Ottesen 1 ; J.S. Hansen 1

1 IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, 4000 Roskilde, Denmark
@article{MMNP_2023_18_a27,
     author = {Bjarke Spangsberg Bak and Morten Andersen and Johnny T. Ottesen and J.S. Hansen},
     title = {How do cell crowding and starvation affect avascular tumor growth of the {EMT6/Ro} tumor?},
     journal = {Mathematical modelling of natural phenomena},
     eid = {8},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023007/}
}
TY  - JOUR
AU  - Bjarke Spangsberg Bak
AU  - Morten Andersen
AU  - Johnny T. Ottesen
AU  - J.S. Hansen
TI  - How do cell crowding and starvation affect avascular tumor growth of the EMT6/Ro tumor?
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023007/
DO  - 10.1051/mmnp/2023007
LA  - en
ID  - MMNP_2023_18_a27
ER  - 
%0 Journal Article
%A Bjarke Spangsberg Bak
%A Morten Andersen
%A Johnny T. Ottesen
%A J.S. Hansen
%T How do cell crowding and starvation affect avascular tumor growth of the EMT6/Ro tumor?
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023007/
%R 10.1051/mmnp/2023007
%G en
%F MMNP_2023_18_a27
Bjarke Spangsberg Bak; Morten Andersen; Johnny T. Ottesen; J.S. Hansen. How do cell crowding and starvation affect avascular tumor growth of the EMT6/Ro tumor?. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 8. doi : 10.1051/mmnp/2023007. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023007/

[1] S.C. Brüningk, I. Rivens, C. Box, U. Oelfke, G. Ter Haar 3D tumour spheroids for the prediction of the effects of radiation and hyperthermia treatments 2020 1

[2] A.C. Burton Rate of growth of solid tumors as a problem of diffusion 1966 157

[3] H.M. Byrne Dissecting cancer through mathematics: from the cell to animal model 2010 221

[4] H.M. Byrne, Mathematical biomedicine and modeling avascular tumor growth. In A.V. Antoniouk and A.R.V. Melnik, editors, Mathematics and Life Sciences, chapter 12, page 279. De Groyter, Germany (2012).

[5] S.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics. Dover Publications (1984).

[6] D. Drasdo, S. Höhme Indvividual-based approach to birth and death in avascular tumors 2003 1163

[7] J.H. Ferziger and M. Perić, Computational methods for fluid dynamics. Springer-Verlag, Berlin (2002).

[8] J.P. Freyer, R.M. Sutherland Prolifirative and clonogenic heterogeneity of cells from EMT6/Ro multicellular spheroids induced by the glucose and oxygen supply 1986 3513

[9] J.P. Freyer, R.M. Sutherland Regulation of growth saturation and development of necrosis inEMT6/Ro milticellular spheroids by the glucose and oxygen supply 1986 3504

[10] P. Gerlee The model muddle: In search of tumor growth laws 2003 2407

[11] P. Gray and S.K. Scott, Chemical Oscillations and Instabilities:Non-linear Chemical Kinetics. Clarendon Press, Oxford (1994).

[12] H.P. Greenspan Models for growth of a solid tumor by diffusion 1972 317

[13] P. Grindrod, Patterns and Waves. Oxford University Press, New York (1991).

[14] G. Hochman, Y. Kogan, V. Vainstein, O. Shukron, A. Lankenau, B. Boysen, R. Lamb, T. Berkman, R. Clarke, C. Duschl and Z. Agur, Evidence for power law tumor growth and implications for cancer radiotherapy (2012).

[15] Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, J.P. Freyer A multiscale model for avascular tumor growth 2005 3884

[16] W.V. Mayneord On a law of growth of Jensen’s rat sarcoma 1932 841

[17] W. Mueller-Klieser, J.P. Freyer, R.M. Sutherland Influence of glucose and oxygen supply conditions oxygenation ofmulticellular spheroids 1986 345

[18] J.D. Murray, Mathematical Biology. Springer Verlag (1989).

[19] K.-A. Norton, A.S. Popel An agent-based model of cancer stem cell initiated avasclular tumorgrowth and metastasis: the effect of seeding frequency and location 2017 20140640

[20] Cancer Res 1986 3504

[21] J.M. Prewitt, L.A. Dethlefsen, M.L. Mendelsohn Analysis of tumor growth curves 1968 389

[22] F.L. Ribeiro, R.V. Dos Santos, A.S. Mata Fractal dimension and universality in avascular tumor growth 2017 042406

[23] T. Roose, S.J. Chapman, P.K. Maini Mathematical models of avascular tumor growth 2007 179

[24] S. Sahoo, A. Sahoo, S.F.C. Shearer Stochastic modelling of avascular tumor growth and therapy 2011 045801

[25] J.P. Ward, J.R. King Mathematical modelling of avascular-tumour growth 1997 39

[26] J.P. Ward, J.R. King Mathematical modelling of avascular-tumour growth II: Modelling growth saturation 1999 171

Cité par Sources :