Traveling solutions for a multi-anticipative car-following traffic model
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 7.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we consider a steady state multi-anticipative traffic model and we provide necessarily and sufficient conditions for the existence of traveling solutions. In our work, the word “traveling” means that the distance between two consecutive vehicles travels continuously between two different states. As application to our result, we show that taking a strictly concave optimal velocity, we can construct a traveling solution such that the distance between two vehicles decreases. The existence, uniqueness and the study of the asymptotic behavior of such solutions is done at the level of the Hamilton-Jacobi equation.
DOI : 10.1051/mmnp/2023006

N. El Khatib 1 ; A. Ghorbel 2 ; A. Joumaa 1 ; M. Zaydan 1

1 Lebanese American University, Department of computer science and mathematics, Byblos Campus, P.O. Box 36, Byblos, Lebanon
2 University of Sfax, Higher Institute of Business Adiministration of Sfax, 3018 Sfax, Tunisia
@article{MMNP_2023_18_a9,
     author = {N. El Khatib and A. Ghorbel and A. Joumaa and M. Zaydan},
     title = {Traveling solutions for a multi-anticipative car-following traffic model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {7},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023006/}
}
TY  - JOUR
AU  - N. El Khatib
AU  - A. Ghorbel
AU  - A. Joumaa
AU  - M. Zaydan
TI  - Traveling solutions for a multi-anticipative car-following traffic model
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023006/
DO  - 10.1051/mmnp/2023006
LA  - en
ID  - MMNP_2023_18_a9
ER  - 
%0 Journal Article
%A N. El Khatib
%A A. Ghorbel
%A A. Joumaa
%A M. Zaydan
%T Traveling solutions for a multi-anticipative car-following traffic model
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023006/
%R 10.1051/mmnp/2023006
%G en
%F MMNP_2023_18_a9
N. El Khatib; A. Ghorbel; A. Joumaa; M. Zaydan. Traveling solutions for a multi-anticipative car-following traffic model. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 7. doi : 10.1051/mmnp/2023006. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023006/

[1] M. Al Haj, N. Forcadel, R. Monneau Existence and uniqueness of traveling waves for fully overdamped Frenkel—Kontorova models 2013 45 99

[2] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama Dynamical model of traffic congestion and numerical simulation 1995 1035

[3] G. Barles, An introduction to the theory of viscosity solutions for first-order hamilton—jacobi equations and applications, in Hamilton-Jacobi equations: approximations, numerical analysis and applications. Springer (2013), pp. 49–109.

[4] M. Brackstone, M. Mcdonald Car-following: a historical review 1999 181 196

[5] M.G. Crandall, H. Ishii, P.-L. Lions User’s guide to viscosity solutions of second order partial differential equations 1992 1 67

[6] M.G. Crandall, P.-L. Lions Viscosity solutions of Hamilton-Jacobi equations 1983 1 42

[7] N. El Khatib, N. Forcadel, M. Zaydan Homogenization of a microscopic pedestrians model on a convergent junction 2022 21

[8] N. El Khatib, N. Forcadel and M. Zaydan, Semidiscrete shocks for the full velocity difference model (2022).

[9] N. Forcadel, C. Imbert, R. Monneau Homogenization of fully overdamped Frenkel—Kontorova models 2009 1057 1097

[10] A. Ghorbel, R. Monneau Existence and nonexistence of semidiscrete shocks for a car-following model in traffic flow 2014 3612 3639

[11] G.-S. Jiang, S.-H. Yu Discrete shocks for finite difference approximations to scalar conservation laws 1998 749 772

[12] H. Lenz, C. Wagner, R. Sollacher Multi-anticipative car-following model 1999 331 335

[13] M.J. Lighthill, G.B. Whitham On kinematic waves II. A theory of traffic flow on long crowded roads 1955 317 345

[14] T.-P. Liu, S.-H. Yu Continuum shock profiles for discrete conservation laws I: Construction 1999 85 127

[15] A. Majda, J. Ralston Discrete shock profiles for systems of conservation laws 1979 445 482

[16] G.F. Newell Nonlinear effects in the dynamics of car following 1961 209 229

[17] L.A. Pipes An operational analysis of traffic dynamics 1953 274 281

[18] P.I. Richards Shock waves on the highway 1956 42 51

[19] J. Ridder, W. Shen Traveling waves for nonlocal models of traffic flow 2019 4001

[20] W. Shen Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition 2018 449

[21] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-I. Tadaki, S. Yukawa Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam 2008 033001

Cité par Sources :