Voir la notice de l'article provenant de la source EDP Sciences
N. El Khatib 1 ; A. Ghorbel 2 ; A. Joumaa 1 ; M. Zaydan 1
@article{MMNP_2023_18_a9, author = {N. El Khatib and A. Ghorbel and A. Joumaa and M. Zaydan}, title = {Traveling solutions for a multi-anticipative car-following traffic model}, journal = {Mathematical modelling of natural phenomena}, eid = {7}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023006/} }
TY - JOUR AU - N. El Khatib AU - A. Ghorbel AU - A. Joumaa AU - M. Zaydan TI - Traveling solutions for a multi-anticipative car-following traffic model JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023006/ DO - 10.1051/mmnp/2023006 LA - en ID - MMNP_2023_18_a9 ER -
%0 Journal Article %A N. El Khatib %A A. Ghorbel %A A. Joumaa %A M. Zaydan %T Traveling solutions for a multi-anticipative car-following traffic model %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023006/ %R 10.1051/mmnp/2023006 %G en %F MMNP_2023_18_a9
N. El Khatib; A. Ghorbel; A. Joumaa; M. Zaydan. Traveling solutions for a multi-anticipative car-following traffic model. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 7. doi : 10.1051/mmnp/2023006. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023006/
[1] Existence and uniqueness of traveling waves for fully overdamped Frenkel—Kontorova models 2013 45 99
, ,[2] Dynamical model of traffic congestion and numerical simulation 1995 1035
, , , ,[3] G. Barles, An introduction to the theory of viscosity solutions for first-order hamilton—jacobi equations and applications, in Hamilton-Jacobi equations: approximations, numerical analysis and applications. Springer (2013), pp. 49–109.
[4] Car-following: a historical review 1999 181 196
,[5] User’s guide to viscosity solutions of second order partial differential equations 1992 1 67
, ,[6] Viscosity solutions of Hamilton-Jacobi equations 1983 1 42
,[7] Homogenization of a microscopic pedestrians model on a convergent junction 2022 21
, ,[8] N. El Khatib, N. Forcadel and M. Zaydan, Semidiscrete shocks for the full velocity difference model (2022).
[9] Homogenization of fully overdamped Frenkel—Kontorova models 2009 1057 1097
, ,[10] Existence and nonexistence of semidiscrete shocks for a car-following model in traffic flow 2014 3612 3639
,[11] Discrete shocks for finite difference approximations to scalar conservation laws 1998 749 772
,[12] Multi-anticipative car-following model 1999 331 335
, ,[13] On kinematic waves II. A theory of traffic flow on long crowded roads 1955 317 345
,[14] Continuum shock profiles for discrete conservation laws I: Construction 1999 85 127
,[15] Discrete shock profiles for systems of conservation laws 1979 445 482
,[16] Nonlinear effects in the dynamics of car following 1961 209 229
[17] An operational analysis of traffic dynamics 1953 274 281
[18] Shock waves on the highway 1956 42 51
[19] Traveling waves for nonlocal models of traffic flow 2019 4001
,[20] Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition 2018 449
[21] Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam 2008 033001
, , , , , , ,Cité par Sources :