Voir la notice de l'article provenant de la source EDP Sciences
Rafael Bravo de la Parra 1 ; Jean-Christophe Poggiale 2 ; Pierre Auger 3
@article{MMNP_2023_18_a14, author = {Rafael Bravo de la Parra and Jean-Christophe Poggiale and Pierre Auger}, title = {The {Effect} of {Connecting} {Sites} in the {Environment} of a {Harvested} {Population}}, journal = {Mathematical modelling of natural phenomena}, eid = {4}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023004/} }
TY - JOUR AU - Rafael Bravo de la Parra AU - Jean-Christophe Poggiale AU - Pierre Auger TI - The Effect of Connecting Sites in the Environment of a Harvested Population JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023004/ DO - 10.1051/mmnp/2023004 LA - en ID - MMNP_2023_18_a14 ER -
%0 Journal Article %A Rafael Bravo de la Parra %A Jean-Christophe Poggiale %A Pierre Auger %T The Effect of Connecting Sites in the Environment of a Harvested Population %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023004/ %R 10.1051/mmnp/2023004 %G en %F MMNP_2023_18_a14
Rafael Bravo de la Parra; Jean-Christophe Poggiale; Pierre Auger. The Effect of Connecting Sites in the Environment of a Harvested Population. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 4. doi : 10.1051/mmnp/2023004. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023004/
[1] Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation. Theor. Pop. Biol. 2015 45 59
, ,[2] Asymmetric dispersal in the multi-patch logistic equation. Theor. Pop. Biol. 2018 11 15
, ,[3] P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez and N.T. Huu, Aggregation of variables and applications to population dynamics, in P. Magal and S. Ruan (Eds.), Structured Population Models in Biology and Epidemiology. Vol. 1936 of Lecture Notes in Mathematics. Math. Biosci. Subseries. Springer (2008) pp. 209–263.
[4] Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life. Rev. 2008 79 105
, , , ,[5] Increase of maximum sustainable yield for fishery in two patches with fast migration. Ecol. Model. 2022 109898
, ,[6] Predator migration decisions, the ideal free distribution, and predator-prey dynamics. Am. Nat. 1999 267 281
, ,[7] Resolving the attraction-production dilemma in artificial reef research: some Yeas and Nays. Fisheries 1998 6 10
[8] Successful artificial reefs depend on getting the context right due to complex socio-bio-economic interactions. Sci. Rep.-UK 2021 16698
, , , , , , ,[9] C.W. Clark, Mathematical Bioeconomics. The Optimal Management of Renewable Resources. John Wiley Sons (1990).
[10] Behavior of yellowfin (Thunnus albacares ) and bigeye (T. obesus) tuna in a network offish aggregating devices (FADs). Mar. Biol. (Berl.) 2007 595 606
, ,[11] Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems. Theor. Ecol. 2016 443 453
, ,[12] Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach. Discrete Contin. Dyn.-B 2014 3087 3104
,[13] Observed changes in the species composition of tuna schools in the Gulf of Guinea between 1981 and 1999, in relation with the fish aggregrating device fishery. Aquat. Living Resour. 2000 253 257
, , , ,[14] Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator. SIAM J. Appl. Math. 1977 631 648
,[15] On territorial behaviour and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheor. 1970 16 36
,[16] Integrating marine protected areas with catch regulation. Can. J. Fish. Aquat. Sci. 2006 642 649
, ,[17] Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat. Theor. Pop. Biol. 1985 181 208
[18] M. Iannelli and A. Pugliese, An Introduction to Mathematical Population Dynamics. Along the trail of Volterra and Lotka. Springer (2014).
[19] Optimal exploitation for a commercial fishing model. Acta Biotheor. 2012 209 223
,[20] A metaecoepidemic model of grassland ecosystem with only consumers’ migration. B. Math. Biol. 2020 88
, ,[21] Global production increased by spatial heterogeneity in a population dynamics model Acta Biotheor. 2005 359 370
, , , ,[22] Impacts of artificial reefs on fishery production in Shimamaki, Japan. Bull. Mar. Sci. 1989 997 1003
,[23] Some considerations of population dynamics and economics in relation to the management of the commercial marine fisheries. J. Fish. Res. Board Canada 1957 669 681
[24] H.L. Smith and H.R. Thieme, Dynamical Systems and Population Persistence. American Mathematical Society (2011).
[25] Carrying capacity of spatially distributed metapopulations. Trends Ecol. Evol. 2021 164 173
, ,[26] Carrying capacity in a heterogeneous environment with habitat connectivity. Ecol. Lett. 2017 1118 1128
, , , , , , ,Cité par Sources :