The Effect of Connecting Sites in the Environment of a Harvested Population
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 4.

Voir la notice de l'article provenant de la source EDP Sciences

This work presents a model of a harvested population in a multisite environment. Locally it has the shape of the Gordon-Schaefer model. This model gives rise, placing us in the case of a fishery, to an equilibrium of the stock and the fishing effort and, therefore, of the yield that is obtained per unit of time. Considering that the management of the fishery can act on the fishing costs, the yield is optimized as a function of the cost. The objective of the work is to compare the maximum obtained yield in two extreme cases: unconnected sites and connected sites with rapid movements of both the stock and the fishing effort. The analysis of the model, first in an environment with two sites and later with any number of them, makes it possible to establish the conditions for one of the two cases to be more favorable from the point of view of the yield. In this way, it is proposed towards which of the two compared cases management should be directed.
DOI : 10.1051/mmnp/2023004

Rafael Bravo de la Parra 1 ; Jean-Christophe Poggiale 2 ; Pierre Auger 3

1 U.D. Matemáticas, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
2 CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Aix Marseille Université, Campus de Luminy, 13288 Marseille, France
3 UMMISCO, Sorbonne Université, Institut de Recherche pour le Développement, IRD, 93143 Bondy, France
@article{MMNP_2023_18_a14,
     author = {Rafael Bravo de la Parra and Jean-Christophe Poggiale and Pierre Auger},
     title = {The {Effect} of {Connecting} {Sites} in the {Environment} of a {Harvested} {Population}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {4},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023004/}
}
TY  - JOUR
AU  - Rafael Bravo de la Parra
AU  - Jean-Christophe Poggiale
AU  - Pierre Auger
TI  - The Effect of Connecting Sites in the Environment of a Harvested Population
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023004/
DO  - 10.1051/mmnp/2023004
LA  - en
ID  - MMNP_2023_18_a14
ER  - 
%0 Journal Article
%A Rafael Bravo de la Parra
%A Jean-Christophe Poggiale
%A Pierre Auger
%T The Effect of Connecting Sites in the Environment of a Harvested Population
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023004/
%R 10.1051/mmnp/2023004
%G en
%F MMNP_2023_18_a14
Rafael Bravo de la Parra; Jean-Christophe Poggiale; Pierre Auger. The Effect of Connecting Sites in the Environment of a Harvested Population. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 4. doi : 10.1051/mmnp/2023004. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023004/

[1] R. Arditi, C. Lobry, T. Sari Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation. Theor. Pop. Biol. 2015 45 59

[2] R. Arditi, C. Lobry, T. Sari Asymmetric dispersal in the multi-patch logistic equation. Theor. Pop. Biol. 2018 11 15

[3] P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez and N.T. Huu, Aggregation of variables and applications to population dynamics, in P. Magal and S. Ruan (Eds.), Structured Population Models in Biology and Epidemiology. Vol. 1936 of Lecture Notes in Mathematics. Math. Biosci. Subseries. Springer (2008) pp. 209–263.

[4] P. Auger, R. Bravo De La Parra, J.-C. Poggiale, E. Sánchez, L. Sanz Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life. Rev. 2008 79 105

[5] P. Auger, B. Kooi, A. Moussaoui Increase of maximum sustainable yield for fishery in two patches with fast migration. Ecol. Model. 2022 109898

[6] C. Bernstein, P. Auger, J.-C. Poggiale Predator migration decisions, the ideal free distribution, and predator-prey dynamics. Am. Nat. 1999 267 281

[7] S.A. Bortone Resolving the attraction-production dilemma in artificial reef research: some Yeas and Nays. Fisheries 1998 6 10

[8] T. Brochier, P. Brehmer, A. Mbaye, M. Diop, N. Watanuki, H. Terashima, D. Kaplan, P. Auger Successful artificial reefs depend on getting the context right due to complex socio-bio-economic interactions. Sci. Rep.-UK 2021 16698

[9] C.W. Clark, Mathematical Bioeconomics. The Optimal Management of Renewable Resources. John Wiley Sons (1990).

[10] L. Dagorn, K.N. Holland, D.G. Itano Behavior of yellowfin (Thunnus albacares ) and bigeye (T. obesus) tuna in a network offish aggregating devices (FADs). Mar. Biol. (Berl.) 2007 595 606

[11] D.L. Deangelis, W.-M. Ni, B. Zhang Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems. Theor. Ecol. 2016 443 453

[12] D.L. Deangelis, B. Zhang Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach. Discrete Contin. Dyn.-B 2014 3087 3104

[13] A. Fonteneau, J. Ariz, D. Gaertner, T. Nordstrom, P. Pallares Observed changes in the species composition of tuna schools in the Gulf of Guinea between 1981 and 1999, in relation with the fish aggregrating device fishery. Aquat. Living Resour. 2000 253 257

[14] H.I. Freedman, D. Waltman Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator. SIAM J. Appl. Math. 1977 631 648

[15] S.D. Fretwell, H.L. Lucas On territorial behaviour and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheor. 1970 16 36

[16] R. Hilborn, F. Michel, G.A. De Leo Integrating marine protected areas with catch regulation. Can. J. Fish. Aquat. Sci. 2006 642 649

[17] R.T. Holt Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat. Theor. Pop. Biol. 1985 181 208

[18] M. Iannelli and A. Pugliese, An Introduction to Mathematical Population Dynamics. Along the trail of Volterra and Lotka. Springer (2014).

[19] C. Jerry, N. Raïssi Optimal exploitation for a commercial fishing model. Acta Biotheor. 2012 209 223

[20] T. Moulin, A. Perasso, E. Venturino A metaecoepidemic model of grassland ecosystem with only consumers’ migration. B. Math. Biol. 2020 88

[21] J.-C. Poggiale, P. Auger, D. Nerini, C. Mantá, F. Gilbert Global production increased by spatial heterogeneity in a population dynamics model Acta Biotheor. 2005 359 370

[22] J.J. Polovina, I. Sakai Impacts of artificial reefs on fishery production in Shimamaki, Japan. Bull. Mar. Sci. 1989 997 1003

[23] M.B. Schaefer Some considerations of population dynamics and economics in relation to the management of the commercial marine fisheries. J. Fish. Res. Board Canada 1957 669 681

[24] H.L. Smith and H.R. Thieme, Dynamical Systems and Population Persistence. American Mathematical Society (2011).

[25] B. Zhang, D.L. Deangelis, W.-M. Ni Carrying capacity of spatially distributed metapopulations. Trends Ecol. Evol. 2021 164 173

[26] B. Zhang, A. Kula, K.M.L. Mack, L. Zhai, A.L. Ryce, W.-M. Ni, D.L. Deangelis, J.D. Van Dyken Carrying capacity in a heterogeneous environment with habitat connectivity. Ecol. Lett. 2017 1118 1128

Cité par Sources :