Forecast analysis and sliding mode control on a stochastic epidemic model with alertness and vaccination
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 5.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, a stochastic SEIR epidemic model is studied with alertness and vaccination. The goal is to stabilize the infectious disease system quickly. The dynamic behavior of the model is analyzed and an integral sliding mode controller with distributed compensation is designed. By using Lyapunov function method, the sufficient conditions for the existence and uniqueness of global positive solutions and the existence of ergodic stationary distributions are obtained. The stochastic center manifold and stochastic average method are used to simplify the system into a one-dimensional Markov diffusion process. The stochastic stability and Hopf bifurcation are analyzed using singular boundary theory. An integral sliding mode controller with non-parallel distributed compensation is designed by linear matrix inequality (LMI) method, which realizes the stability of system and prevents the outbreak of epidemic disease. The correction of theoretical analysis and the effectiveness of controller are validated using numerical simulation performed in MATLAB/Simulink.
DOI : 10.1051/mmnp/2023003

Yue Zhang 1 ; Xiju Wu 1

1 College of sciences, Northeastern University, Liaoning, Shenyang, 110004, China
@article{MMNP_2023_18_a15,
     author = {Yue Zhang and Xiju Wu},
     title = {Forecast analysis and sliding mode control on a stochastic epidemic model with alertness and vaccination},
     journal = {Mathematical modelling of natural phenomena},
     eid = {5},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023003/}
}
TY  - JOUR
AU  - Yue Zhang
AU  - Xiju Wu
TI  - Forecast analysis and sliding mode control on a stochastic epidemic model with alertness and vaccination
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023003/
DO  - 10.1051/mmnp/2023003
LA  - en
ID  - MMNP_2023_18_a15
ER  - 
%0 Journal Article
%A Yue Zhang
%A Xiju Wu
%T Forecast analysis and sliding mode control on a stochastic epidemic model with alertness and vaccination
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023003/
%R 10.1051/mmnp/2023003
%G en
%F MMNP_2023_18_a15
Yue Zhang; Xiju Wu. Forecast analysis and sliding mode control on a stochastic epidemic model with alertness and vaccination. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 5. doi : 10.1051/mmnp/2023003. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023003/

[1] Z. Abbasi, I. Zamani, A. Mehra, M. Shafìeirad, A. Ibeas Optimal control design of impulsive SQEIAR epidemic models with application to COVID-19. Chaos Solit. Fract. 2020 110054

[2] J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, J.H. Wu A model for influenza with vaccination and antiviral treatment. J. Theor. Biol. 2008 118 130

[3] S.K. Brooks, R.K. Webster, L.E. Smith, L. Woodland, S. Wessely, N. Greenberg, G. Rubin The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet 2020 912 920

[4] F. Castanos, L. Fridman Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control 2006 853 858

[5] P. Dreessche, J. Watmough Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002 29 48

[6] C. Edwards and S.K. Spurgeon, Sliding mode control: theory and applications (1998).

[7] M. El Fatini, I. Sekkak, A. Laaribi A threshold of a delayed stochastic epidemic model with Crowly-Martin functional response and vaccination. Physica A 2019 151 160

[8] A. Friedman, Stochastic Differential Equations and Applications. Stochastic Differential Equations and Applications (1976).

[9] Z.T. Huang, Q.G. Yang, J.F. Cao Stochastic stability and bifurcation for the chronic state in Marchuk’s model with noise. Appl. Math. Model. 2011 5842 5855

[10] Z.T. Huang, Q.G. Yang, J.F. Cao The stochastic stability and bifurcation behavior of an internet congestion control model. Math. Comput. Model. 2011 1954 1965

[11] P. Gahinet, P. Apkarian A linear matrix inequality approach to Hi control. Int. J. Robust Nonlinear Control 1994 421 448

[12] Q. Gao, G. Feng, L. Liu, J.B. Qiu, Y. Wang An ISMC approach to robust stabilization of uncertain stochastic time-delay systems. IEEE Trans. Ind. Electr. 2014 6986 6994

[13] Q. Gao, G. Feng, L. Liu, J.B. Qiu, Y. Wang Robust Hœ control for stochastic T-S fuzzy systems via integral sliding-mode approach. IEEE Trans. Fuzzy Syst. 2013 870 881

[14] T.M. Guerra, A. Sala, K. Tanaka Fuzzy control turns 50: 10 years later. Fuzzy Sets Syst. 2015 168 182

[15] R. Khasminskii, Stochastic stability of differential equations. Springer Science Business Media (2011).

[16] R.Z. Khasminskii On the principle of averaging the Ito’s stochastic differential equations. Kybernetika 1968 260 279

[17] N. Leung, D.K. Chu, E.Y. Shiu, K. Chan, J.J. Mcdevitt, B.J. Hau, H. Yen, Y.G. Li, D.K. Ip, J. Peiris, W. Seto, G.M. Leung, D.K. Milton, B.J. Cowling Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020 676 680

[18] Lin and Y.K. Cai, Probabilistic structural dynamics, Probabilistic structural dynamics (2004).

[19] Q. Liu, D.Q. Jiang, T. Hayat, A. Alsaedi Dynamics of a stochastic predator-prey model with stage structure for predator and Holling Type II functional response. J. Nonlinear Sci. 2018 1151 1187

[20] M. Liu, C.Z. Bai Optimal harvesting policy of a stochastic food chain population model. Appl. Math. Comput. 2014 265 270

[21] J.H. Li, Q.L. Zhang, X.G. Yan, S.K. Spurgeon Robust stabilization of T-S fuzzy stochastic descriptor systems via integral sliding modes. IEEE Trans. Cybern. 2017 2736 2749

[22] Q. Liu, Q.M. Chen Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 2015 140 153

[23] Q. Liu, D.Q. Jiang, T. Hayat, A. Alsaedi Dynamics of a stochastic predator-prey model with distributed delay and Markovian switching. Physica A 2019 118 130

[24] Q. Liu, D.Q. Jiang, N.Z. Shi, T. Hayat, A. Alsaedi Dynamics of a stochastic tuberculosis model with constant recruitment and varying total population size. Physica A 2017 518 530

[25] X.R. Mao, Stochastic differential equations and their applications (1997).

[26] X.R. Mao and C.G. Yuan, Stochastic differential equations with Markovian switching. Stoch. Differ. Equ. Markovian Switch. (2006).

[27] G.P. Matthews, R.A. Decarlo Decentralized tracking for a class of interconnected nonlinear systems using variable structure control. Automatica 1988 187 193

[28] A. Mehra, I. Zamani, Z. Abbasi, A. Ibeas Observer-based adaptive PI sliding mode control of developed uncertain SEIAR influenza epidemic model considering dynamic population. J. Theor. Biol. 2019 118 130

[29] N.S. Namachchivaya Stochastic bifurcation. Appl. Math. Comput. 1990 37 95

[30] L. Qiao, Q.L. Zhang, G.F. Zhang Admissibility analysis and control synthesis for T-S fuzzy descriptor systems. IEEE Trans. Fuzzy Syst. 2017 729 740

[31] J. Slotine and W.P. Li, Applied nonlinear control (1991).

[32] K. Tanaka, H. Ohtake, H.O. Wang A descriptor system approach to fuzzy control system design via fuzzy lyapunov functions. IEEE Trans. Fuzzy Syst. 2007 333 341

[33] V. Utkin, J. Shi Integral sliding mode in systems operating under uncertainty conditions. Proceedings of 35th IEEE Conference on Decision and Control 1996 4591 4596

[34] V. Utkin, J. Guldner and J. Shi, Sliding mode control in electromechanical systems (1999).

[35] D.M. Xiao, S.G. Ruan Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 2007 419 429

[36] D.Y. Xu, Z.G. Yang, Y.M. Huang Existence - uniqueness and continuation theorems for stochastic functional differential equations. J. Differ. Equ. 2008 1681 1703

[37] X.H. Zhang, D.Q. Jiang, T. Hayat, B. Ahmad Dynamics of a stochastic SIS model with double epidemic diseases driven by Levy jumps. Physica A 2017 767 777

[38] J.H. Zhang, Y.J. Lin, G. Feng Analysis and synthesis of memory-based fuzzy sliding mode controllers. IEEE Trans. Cybern. 2015 2880 2889

[39] W.Q. Zhu, Nonlinear Dynamics and Control Hamilton Theoretical System Frame. Science Press, Beijing (2003).

[40] B.Y. Zhu, Analysis and Control for a Kind of T-S Fuzzy Descriptor Systems, Master’s thesis, Northeastern University (2006).

Cité par Sources :