Voir la notice de l'article provenant de la source EDP Sciences
Pei Xia 1 ; Yi Zhang 1 ; Rusuo Ye 1
@article{MMNP_2022_17_a44, author = {Pei Xia and Yi Zhang and Rusuo Ye}, title = {Interaction of high-order breather, periodic wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional {Fokas} equation}, journal = {Mathematical modelling of natural phenomena}, eid = {45}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022047}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022047/} }
TY - JOUR AU - Pei Xia AU - Yi Zhang AU - Rusuo Ye TI - Interaction of high-order breather, periodic wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional Fokas equation JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022047/ DO - 10.1051/mmnp/2022047 LA - en ID - MMNP_2022_17_a44 ER -
%0 Journal Article %A Pei Xia %A Yi Zhang %A Rusuo Ye %T Interaction of high-order breather, periodic wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional Fokas equation %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022047/ %R 10.1051/mmnp/2022047 %G en %F MMNP_2022_17_a44
Pei Xia; Yi Zhang; Rusuo Ye. Interaction of high-order breather, periodic wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional Fokas equation. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 45. doi : 10.1051/mmnp/2022047. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022047/
[1] M.J. Ablowitz, M.A. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, New York (1991).
[2] Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions Sov. Phys. JETP 1985 894 899
, ,[3] Waves that appear from nowhere and disappear without a trace Phys. Lett. A 2009 675 678
, ,[4] Reductions of the (4+1)-dimensional Fokas equation and their solutions Nonlinear Dyn 2020 3013 3028
, ,[5] Lump-type solutions for the (4+1)-dimensional Fokas equation via symbolic computations Mod. Phys. Lett. B 2017 1750224
,[6] Dynamic properties of interactional solutions for the (4+1)-dimensional Fokas equation Nonlinear Dyn 2021 3489 3502
, ,[7] Multiple rogue wave and breather solutions for the (3+1)-dimensional KPI equation Comput. Math. Appl 2018 1099 1107
,[8] Transformation groups for soliton equations-Euclidean Lie algebras and reduction of the KP hierarchy Publ. Res. I. Math. Sci 1982 1077 1110
, ,[9] On three-dimensional packets of surface waves Proc. R. Soc. Lond. Ser. A 1974 101 110
,[10] Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev- Petviashvili equation for the water waves Nonlinear Dyn 2019 2023 2040
, ,[11] Oceanic rogue waves Annu. Rev. Fluid. Mech 2008 287 310
, ,[12] Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions Phys. Rev. Lett 2006 190201
[13] R. Hirota, The Direct Method in Soliton Theory. Cambridge University Press, New York (2004).
[14] Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits Phys. Rev. E 2012 066601
, ,[15] Physical mechanisms of the rogue wave phenomenon Eur. J. Mech. B. Fluids 2003 603 634
,[16] The Peregrine soliton in nonlinear fibre optics Nat. Phys 2010 790 795
, ,[17] To construct lumps, breathers and interaction solutions of arbitrary higher-order for a (4+1)-dimensional Fokas equation Mod. Phys. Lett. B 2020 2050221
,[18] Families of semi-rational solutions to the Kadomtsev-Petviashvili I equation Commun. Nonlinear Sci. Numer. Simulat 2019 480 491
, ,[19] Nonlocal symmetries related to Bäcklund transformation and their applications J. Phys. A-Math. Theor 2012 155209
, ,[20] Comment on the 3+1 dimensional Kadomtsev-Petviashvili equations Commun. Nonlinear. Sci. Numer. Simulat 2011 2663 2666
[21] A new (3+1)-dimensional Kadomtsev-Petviashvili equation and its integrability, multiplesolitons, breathers and lump waves Math. Comput. Simulat 2021 505 519
, ,[22] Lump solutions to the Kadomtsev-Petviashvili equation Phys. Lett. A 2015 1975 1978
[23] Lump solutions to nonlinear partial differential equations via Hirota bilinear forms J. Differ. Equ 2018 2633 2659
,[24] Two dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction Phys. Lett. A 1977 205 C206
,[25] General high-order rogue waves and their dynamics in the nonlinear Schrodinger equation Proc. R. Soc. Lond. Ser. A 2012 1716 1740
,[26] Doubly localized two-dimensional rogue waves in the Davey-Stewartson I equation J. Nonlinear Sci 2021 1 44
, ,[27] Doubly localized rogue waves on a background of dark solitons for the Fokas system Appl. Math. Lett 2021 107435
, ,[28] New soliton wave structures of nonlinear (4+1)-dimensional Fokas dynamical model by using different methods Alex. Eng. J 2021 795 803
[29] Soliton equations as dynamical systems on infinite dimensional Grassmann manifold North-Holland Math. Stud 1983 259 271
[30] Two-dimensional lumps in nonlinear dispersive systems J. Math. Phys 1979 1496 1503
,[31] Optical rogue waves Nature 2007 1054 1057
, ,[32] Parameter limit method and its application in the (4+1)-dimensional Fokas equation Comput. Math. Appl 2018 4214 4220
, ,[33] On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation J. Math. Phys 2018 073505
, ,[34] A variety of multiple-soliton solutions for the integrable (4+1)-dimensional Fokas equation Wave. Random. Complex 2021 46 56
[35] P. Xia, Y. Zhang, H. Zhang et al., Rogue lumps on a background of kink waves for the Bogoyavlenskii-Kadomtsev-Petviashvili equation. Mod. Phys. Lett. B (2022) 2150629.
[36] P. Xia, Y. Zhang, H. Zhang et al., Some novel dynamical behaviours of localized solitary waves for the Hirota-Maccari system. Nonlinear Dyn. (2022) 1–9.
[37] J. Yang, Nonlinear waves in integrable and nonintegrable systems. SIAM. Philadelphia (2010).
[38] Symmetry groups and exact solutions of new (4+1)-dimensional Fokas equtaion Commun. Theor. Phys 2009 876 880
,[39] Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation Nonlinear Anal-Real 2017 237 252
, ,[40] High-dimensional nonlinear wave transitions and their mechanisms Chaos 2020 113107
, ,[41] Solitary wave, M-lump and localized interaction solutions to the (4+1)-dimensional Fokas equation Phys. Scr 2020 045217
,Cité par Sources :