Interaction of high-order breather, periodic wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional Fokas equation
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 45.

Voir la notice de l'article provenant de la source EDP Sciences

The interaction of high-order breather, periodic-wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional Fokas equation are investigated by means of the Kadomtsev-Petviashvili (KP) hierarchy reduction method. Through analyzing the structural characteristics of periodic wave solutions, we find that evolution of the breather is decided by two characteristic lines. Interestingly, growing-decaying amplitude periodic wave and amplitude-invariant periodic wave are given through some conditions posed on the parameters. Some fascinating nonlinear wave patterns composed of high-order breathers and high-order periodic waves are shown. Furthermore, taking the long wave limit on the periodic-wave solutions, the semi-rational solutions composed of lumps, moving solitons, breathers, and periodic waves are obtained. Some novel dynamical processes are graphically analyzed. Additionally, we provide a new method to derive periodic-wave and semi-rational solutions for the (3+1)-dimensional KP equation by reducing the solutions of the (4+1)-dimensional Fokas equation. The presented results might help to understand the dynamic behaviors of nonlinear waves in the fluid fields and may provide some new perspectives for studying nonlinear wave solutions of high dimensional integrable systems.
DOI : 10.1051/mmnp/2022047

Pei Xia 1 ; Yi Zhang 1 ; Rusuo Ye 1

1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China
@article{MMNP_2022_17_a44,
     author = {Pei Xia and Yi Zhang and Rusuo Ye},
     title = {Interaction of high-order breather, periodic wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional {Fokas} equation},
     journal = {Mathematical modelling of natural phenomena},
     eid = {45},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022047/}
}
TY  - JOUR
AU  - Pei Xia
AU  - Yi Zhang
AU  - Rusuo Ye
TI  - Interaction of high-order breather, periodic wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional Fokas equation
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022047/
DO  - 10.1051/mmnp/2022047
LA  - en
ID  - MMNP_2022_17_a44
ER  - 
%0 Journal Article
%A Pei Xia
%A Yi Zhang
%A Rusuo Ye
%T Interaction of high-order breather, periodic wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional Fokas equation
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022047/
%R 10.1051/mmnp/2022047
%G en
%F MMNP_2022_17_a44
Pei Xia; Yi Zhang; Rusuo Ye. Interaction of high-order breather, periodic wave, lump, rational soliton solutions and mixed solutions for reductions of the (4+1)-dimensional Fokas equation. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 45. doi : 10.1051/mmnp/2022047. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022047/

[1] M.J. Ablowitz, M.A. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, New York (1991).

[2] N. Akhmediev, V.M. Eleonskii, N.E. Kulagin Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions Sov. Phys. JETP 1985 894 899

[3] N. Akhmediev, A. Ankiewicz, M. Taki Waves that appear from nowhere and disappear without a trace Phys. Lett. A 2009 675 678

[4] Y. Cao, J.S. He, Y. Cheng Reductions of the (4+1)-dimensional Fokas equation and their solutions Nonlinear Dyn 2020 3013 3028

[5] L. Cheng, Y. Zhang Lump-type solutions for the (4+1)-dimensional Fokas equation via symbolic computations Mod. Phys. Lett. B 2017 1750224

[6] A.H. Chen, J. Yan, Y.R. Guo Dynamic properties of interactional solutions for the (4+1)-dimensional Fokas equation Nonlinear Dyn 2021 3489 3502

[7] W. Cui, Z. Zhaqilao Multiple rogue wave and breather solutions for the (3+1)-dimensional KPI equation Comput. Math. Appl 2018 1099 1107

[8] E. Date, M. Jimbo, M. Kashiwara Transformation groups for soliton equations-Euclidean Lie algebras and reduction of the KP hierarchy Publ. Res. I. Math. Sci 1982 1077 1110

[9] A. Davey, K. Stewartson On three-dimensional packets of surface waves Proc. R. Soc. Lond. Ser. A 1974 101 110

[10] C. Ding, Y. Gao, G. Deng Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev- Petviashvili equation for the water waves Nonlinear Dyn 2019 2023 2040

[11] K. Dysthe, H.E. Krogstad, P. Muller Oceanic rogue waves Annu. Rev. Fluid. Mech 2008 287 310

[12] A.S. Fokas Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions Phys. Rev. Lett 2006 190201

[13] R. Hirota, The Direct Method in Soliton Theory. Cambridge University Press, New York (2004).

[14] D.J. Kedziora, A. Ankiewicz, N. Akhmediev Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits Phys. Rev. E 2012 066601

[15] C. Kharif, E. Pelinovsky Physical mechanisms of the rogue wave phenomenon Eur. J. Mech. B. Fluids 2003 603 634

[16] B. Kibler, J. Fatome, C. Finot The Peregrine soliton in nonlinear fibre optics Nat. Phys 2010 790 795

[17] W. Li, Y. Liu To construct lumps, breathers and interaction solutions of arbitrary higher-order for a (4+1)-dimensional Fokas equation Mod. Phys. Lett. B 2020 2050221

[18] W. Liu, A.M. Wazwaz, X. Zheng Families of semi-rational solutions to the Kadomtsev-Petviashvili I equation Commun. Nonlinear Sci. Numer. Simulat 2019 480 491

[19] S.Y. Lou, X. Hu, Y. Chen Nonlocal symmetries related to Bäcklund transformation and their applications J. Phys. A-Math. Theor 2012 155209

[20] W.X. Ma Comment on the 3+1 dimensional Kadomtsev-Petviashvili equations Commun. Nonlinear. Sci. Numer. Simulat 2011 2663 2666

[21] Y.L. Ma, A.M. Wazwaz, B.Q. Li A new (3+1)-dimensional Kadomtsev-Petviashvili equation and its integrability, multiplesolitons, breathers and lump waves Math. Comput. Simulat 2021 505 519

[22] W.X. Ma Lump solutions to the Kadomtsev-Petviashvili equation Phys. Lett. A 2015 1975 1978

[23] W.X. Ma, Y. Zhou Lump solutions to nonlinear partial differential equations via Hirota bilinear forms J. Differ. Equ 2018 2633 2659

[24] S.V. Manakov, V.E. Zakharov Two dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction Phys. Lett. A 1977 205 C206

[25] Y. Ohta, J.K. Yang General high-order rogue waves and their dynamics in the nonlinear Schrodinger equation Proc. R. Soc. Lond. Ser. A 2012 1716 1740

[26] J.G. Rao, A.S. Fokas, J.S. He Doubly localized two-dimensional rogue waves in the Davey-Stewartson I equation J. Nonlinear Sci 2021 1 44

[27] J.G. Rao, J.S. He, D. Mihalache Doubly localized rogue waves on a background of dark solitons for the Fokas system Appl. Math. Lett 2021 107435

[28] S. Sarwar New soliton wave structures of nonlinear (4+1)-dimensional Fokas dynamical model by using different methods Alex. Eng. J 2021 795 803

[29] M. Sato Soliton equations as dynamical systems on infinite dimensional Grassmann manifold North-Holland Math. Stud 1983 259 271

[30] J. Satsuma, M.J. Ablowitz Two-dimensional lumps in nonlinear dispersive systems J. Math. Phys 1979 1496 1503

[31] D.R. Solli, C. Ropers, P. Koonath Optical rogue waves Nature 2007 1054 1057

[32] W. Tan, Z.D. Dai, J.L. Xie Parameter limit method and its application in the (4+1)-dimensional Fokas equation Comput. Math. Appl 2018 4214 4220

[33] X.B. Wang, S.F. Tian, L.L. Feng On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation J. Math. Phys 2018 073505

[34] A.M. Wazwaz A variety of multiple-soliton solutions for the integrable (4+1)-dimensional Fokas equation Wave. Random. Complex 2021 46 56

[35] P. Xia, Y. Zhang, H. Zhang et al., Rogue lumps on a background of kink waves for the Bogoyavlenskii-Kadomtsev-Petviashvili equation. Mod. Phys. Lett. B (2022) 2150629.

[36] P. Xia, Y. Zhang, H. Zhang et al., Some novel dynamical behaviours of localized solitary waves for the Hirota-Maccari system. Nonlinear Dyn. (2022) 1–9.

[37] J. Yang, Nonlinear waves in integrable and nonintegrable systems. SIAM. Philadelphia (2010).

[38] Z.Z. Yang, Z.Y. Yan Symmetry groups and exact solutions of new (4+1)-dimensional Fokas equtaion Commun. Theor. Phys 2009 876 880

[39] Y. Zhang, J.W. Yang, K.W. Chow Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation Nonlinear Anal-Real 2017 237 252

[40] X. Zhang, L. Wang, C. Liu High-dimensional nonlinear wave transitions and their mechanisms Chaos 2020 113107

[41] W.J. Zhang, T.C. Xia Solitary wave, M-lump and localized interaction solutions to the (4+1)-dimensional Fokas equation Phys. Scr 2020 045217

Cité par Sources :