Voir la notice de l'article provenant de la source EDP Sciences
Sergey Savotchenko 1 ; Aleksei Cherniakov 2
@article{MMNP_2023_18_a3, author = {Sergey Savotchenko and Aleksei Cherniakov}, title = {Models of recrystallization activated by a diffusion flow of impurities from a thin-film coating with a convection term at the crystal surface: exact solutions}, journal = {Mathematical modelling of natural phenomena}, eid = {1}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2022046}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022046/} }
TY - JOUR AU - Sergey Savotchenko AU - Aleksei Cherniakov TI - Models of recrystallization activated by a diffusion flow of impurities from a thin-film coating with a convection term at the crystal surface: exact solutions JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022046/ DO - 10.1051/mmnp/2022046 LA - en ID - MMNP_2023_18_a3 ER -
%0 Journal Article %A Sergey Savotchenko %A Aleksei Cherniakov %T Models of recrystallization activated by a diffusion flow of impurities from a thin-film coating with a convection term at the crystal surface: exact solutions %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022046/ %R 10.1051/mmnp/2022046 %G en %F MMNP_2023_18_a3
Sergey Savotchenko; Aleksei Cherniakov. Models of recrystallization activated by a diffusion flow of impurities from a thin-film coating with a convection term at the crystal surface: exact solutions. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 1. doi : 10.1051/mmnp/2022046. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022046/
[1] O.M. Alifanov, Inverse Heat Transfer Problems. Springer-Verlag, Berlin (1994).
[2] Effect of nickel on point defects diffusion in Fe-Ni alloys Acta Mater 2017 367 373
, ,[3] Diffusion controlled grain boundary and triple junction wetting in polycrystalline solid metal Defect Diffus. Forum 2015 127 129
, , , , ,[4] Modeling growth rates in static layer melt crystallization Cryst. Growth Des 2013 5229 5240
, ,[5] Ona two-phase Stefan problem with convective boundary condition including a density jump at the free boundary Math. Methods Appi. Sci 2020 3744 3753
,[6] Reconstruction of the Stefan-Boltzmann coefficients in a heat-transfer process Inverse Prob 2012 045007
, ,[7] An overview of laser metal deposition for cladding: defect formation mechanisms, defect suppression methods and performance improvements of laser-cladded layers Materials (Basel, Switzerland) 2022 5522
, , , , , , , , ,[8] Modeling of grain-boundary diffusion taking into account the grain shape AIP Conf. Proc 2019 020050
[9] Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides IEEE J. Quantum Electr 2008 680 685
, , , , , ,[10] Thermal contact conductance of metal/polymer joints: an analytical and experimental investigation J. Thermophys. Heat Transfer 2001 228 238
,[11] Modeling thermal conductivity of porous thermal barrier coatings Coatings 2019 101
, ,[12] Problem of attaining constant impurity concentration over ingot height Modern Electr. Mater 2018 41 51
,[13] Precipitate-induced nonlinearities of diffusion along grain boundaries in Al-based alloy Phys. Rev. Mater 2018 073801
, , , , , , ,[14] Grain boundary diffusion of nickel in submicrocrystalline molybdenum processed by severe plastic deformation Tech. Phys. Lett 2008 136 138
, , , ,[15] Self-diffusion in nanocrystalline Fe and Fe-rich alloys Defect Diffus. Forum 2001 1199 1204
, , , , , , ,[16] Temperature distribution in laser-clad multi-layers Mater. Sci. Eng. A 2004 313 320
, ,[17] Analytical solution of the single-phase Stefan problem Math. Models Comput. Simul 2009 180 188
,[18] I. Kaur, Y. Mishin and W. Gust, Fundamentals of grain and interphase boundary diffusion. Wiley, Chichester (1995).
[19] Description of grain-boundary diffusion in nanostructured materials for thin-fìlm diffusion source Phys. Metals Metallogr 2015 225 234
, ,[20] Grain boundary diffusion characteristics of nanostructured nickel Scr. Mater 2001 873 878
, , , ,[21] Grain boundary diffusion and mechanisms of creep of nanostructured metals Interface Science 2002 31 36
, , ,[22] Y.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya et al., Grain boundary diffusion and properties of nanostructured materials. Cambridge International Science Publishing, Cambridge, UK (2007), 250 p.
[23] Grain boundary diffusion patterns under nonequilibrium and migration of grain boundaries in nanoctructure materials Bull. Russ. Acad. Sci.: Phys 2009 1277 1283
,[24] Study of thermal behavior and solidifìcation characteristics during laser welding of dissimilar metals Res. Phys 2019 1062 1072
, , , , ,[25] Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1,723 K: a miniaturized study Contrib. Mineral Petrol 2011 739 749
, ,[26] H. Mehrer, Diffusion in Solids. Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer-Verlag, Berlin, Heidelberg (2007), p. 645.
[27] A.M. Meirmanov, The Stefan Problem, Walter de Gruyter, Berlin, Germany (1992).
[28] Explicit solutions to the one-phase Stefan problem with temperature-dependent thermal conductivity and a convective term Int. J. Eng. Sci 2003 1685 1689
,[29] Numerical study to represent non-isothermal melt-crystallization kinetics at laser-powder cladding Model. Numer. Simul. Mater. Sci 2013 61 69
, , , , , ,[30] Grain boundary width, energy and self-diffusion in nickel: effect of material purity Acta Mater 2013 5188 5197
, , ,[31] Ni grain boundary diffusion in Cu-Co alloys Defect Diffus. Forum 2015 130 132
,[32] Peculiarities of recrystallization activated by a diffusion flow of an impurity from a thin-fìlm coating Eur. Phys. J. B 2021 190
[33] The nonlinear wave and diffusion processes in media with a jump change in characteristics depending on the amplitude of the fìeld distribution Commun. Nonlinear Sci. Numer. Simul 2021 105785
[34] Models of activated recrystallization on isolated grain boundaries in polycrystals Modern Phys. Lett. B 2022 2150536
[35] Diffusion from a constant source along nonequilibrium dislocation pipes Int. J. Heat Mass Transfer 2022 122655
,[36] The nonlinear diffusion model of recrystallization J. Heat Transfer 2022 064501
,[37] Single-phase model of recrystallization of molybdenum activated by diffusion of nickel impurities Russ. Phys. J 2007 1118 1123
, ,[38] Modeling of impurities segregation phenomenon in the melt crystallization process by continuous cellular automata method Prikladnaya diskretnaya matematika 2016 104 118
, ,[39] The Stefan problem with an imperfect thermal contact at the interface J. Appl. Mech 1982 715 720
[40] Exact solution for a Stefan problem with convective boundary condition and density jump PAMM Proc. Appl. Math. Mech 2007 1040307 1040308
[41] The redistribution of solute atoms during the solidifìcation of metals Acta Metall 1953 428 437
, , ,[42] Modeling the tunable thermal conductivity of intercalated layered materials with three-directional anisotropic phonon dispersion and relaxation time J. Mater. Chem. C 2022 11686 11696
, , ,[43] Uniqueness of moving boundary for a heat conduction problem with nonlinear interface conditions Appl. Math. Lett 2010 600 604
[44] Re-estimation of thermal contact resistance considering near-fìeld thermal radiation effect Appl. Therm. Eng 2019 113601
, , , ,[45] Heat transfer in composite materials with Stefan-Boltzmann interface conditions Math. Methods Appl. Sci 2008 1297 1314
, ,[46] Reconstruction of the heat transfer coefficient at the interface of a bi-material Inverse Prob. Sci. Eng 2020 374 401
, ,Cité par Sources :