M.M. Bhatti  1 ; Sara I. Abdelsalam  2 , 3
@article{10_1051_mmnp_2022045,
author = {M.M. Bhatti and Sara I. Abdelsalam},
title = {Scientific {Breakdown} of a {Ferromagnetic} {Nanofluid} in {Hemodynamics:} {Enhanced} {Therapeutic} {Approach}},
journal = {Mathematical modelling of natural phenomena},
eid = {44},
year = {2022},
volume = {17},
doi = {10.1051/mmnp/2022045},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/}
}
TY - JOUR AU - M.M. Bhatti AU - Sara I. Abdelsalam TI - Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/ DO - 10.1051/mmnp/2022045 LA - en ID - 10_1051_mmnp_2022045 ER -
%0 Journal Article %A M.M. Bhatti %A Sara I. Abdelsalam %T Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach %J Mathematical modelling of natural phenomena %] 44 %D 2022 %V 17 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/ %R 10.1051/mmnp/2022045 %G en %F 10_1051_mmnp_2022045
M.M. Bhatti; Sara I. Abdelsalam. Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 44. doi: 10.1051/mmnp/2022045
[1] , Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms Appl. Math. Mech 2020 711 724
[2] , , Electromagnetically modulated self-propulsion of swimming sperms via cervical canal Biomech. Model. Mechanobiol 2021 861 878
[3] , , , , Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties J. Magn. Magn. Mater 2007 10 16
[4] , , , Intra-uterine particle-fluid motion through a compliant asymmetric tapered channel with heat transfer J. Thermal Anal. Calorim 2021 2259 2267
[5] M.M. Bhatti and S.I. Abdelsalam, Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects, Waves Random Complex Media (2021) 1–26.
[6] , TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system Int. J. Numer. Methods Heat Fluid Flow 2020 4775 4796
[7] Nodal/saddle stagnation-point boundary layer flow of CuO-Ag/water hybrid nanofluid: a novel hybridity model Microsyst. Technolog 2019 2609 2623
[8] , , , Blood flow of nanofluid through an artery with composite stenosis and permeable walls Appl. Nanosci 2014 919 926
[9] , , , Numerical simulation for Mhd Williamson fluid utilizing modified Darcy’s law Res. Phys 2018 751 759
[10] Homotopy perturbation technique Comput. Methods Appl. Mech. Eng 1999 257 262
[11] Homotopy perturbation method: a new nonlinear analytical technique Appl. Math. Comput 2003 73 79
[12] B. Jabbaripour, N.M. Rostami, S. Dinarvand and I. Pop, Aqueous aluminium-copper hybrid nanofluid flow past a sinusoidal cylinder considering three-dimensional magnetic field and slip boundary condition, Proc. Inst. Mech. Eng. E (2021) 09544089211046434.
[13] , Numerical solution of Mhd stagnation point flow of Williamson fluid model over a stretching cylinder Int. J. Nonlinear Sci. Numer. Simul 2015 161 164
[14] , , , , , , , , , Pegylated tantalum nanoparticles: a metallic photoacoustic contrast agent for multiwavelength imaging of tumors Small 2019 1903596
[15] , , , , Porous tantalum and tantalum oxide nanoparticles for regenerative medicine Acta Neurobiolog. Exp. (Wars) 2014 188 196
[16] , , Controlled preparation of nanosize cobalt ferrite magnetic particles J. Magn. Magn. Mater 1995 67 71
[17] , , , , , Dual solutions for Casson hybrid nanofluid flow due to a stretching/shrinking sheet: a new combination of theoretical and experimental models Chin. J. Phys 2021 574 588
[18] , Influence of inclined magnetic field on peristaltic flow of a Williamson fluid model in an inclined symmetric or asymmetric channel Math. Comput. Modell 2010 107 119
[19] , , , , Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system J. Magn. Magn. Mater 2005 483 496
[20] , , Nanoparticles of CoxFeyDzO4: synthesis and superparamagnetic properties Eur. Phys. J. B 1999 583 592
[21] , , , , , High coercivity induced by mechanical milling in cobalt ferrite powders J. Magn. Magn. Mater 2013 182 187
[22] , , , Non-linear blood flow analysis on Mhd peristaltic motion of a Williamson fluid in a micro channel AIP Conf. Proc 2019 020048 10
[23] , , , , , , , Swimming of microbes in blood flow of nano-bioconvective Williamson fluid Thermal Sci. Eng. Progr 2021 101018
[24] , Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid Ultrasonics 2014 834 840
[25] , , , Thermal transport of radiative Williamson fluid over stretchable curved surface Therm. Sci. Eng. Progr 2021
[26] , , , , , , , Morphology control of tantalum carbide nanoparticles through dopant additions J. Phys. Chem. C 2021 10665 10675
[27] , , Bio-mathematical analysis of electro-osmotically modulated hemodynamic blood flow inside a symmetric and nonsymmetric stenosed artery with joule heating Int. J. Biomath 2022 2150071
[28] , , , Synthesis and characterization of cobalt nanoparticles using hydrazine and citric acid J. Nanotechnol 2014
[29] , , , , , , , , , Multi- elemental nanoparticle exposure after tantalum component failure in hip arthroplasty: in-depth analysis of a single case Nanomedicine 2017 2415 2423
[30] , , Reddy, The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge Propuls. Power Res 2020 87 99
[31] , , Biocompatibility of cobalt iron oxide magnetic nanoparticles in male rabbits Korean J. Chem. Eng 2016 2222 2227
[32] , , , , , Magnetic properties of ultrafine cobalt ferrite particles J. Appi. Phys 2003 7486 7488
[33] , , , , , , Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: a review Open Life Sci 2021 14 30
[34] , , , , , Metallic cobalt nanoparticles for heating applications J. Magn. Magn. Mater 2007 224 227
[35] , , , , , , , , , , , Investigation of cytotoxicity, oxidative stress, and inflammatory responses of tantalum nanoparticles in Thp-1-derived macrophages Med. Inflamm 2020
[36] , , , , Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field Eur. Phys. J. Special Topics 2022 521 533
[37] , , , , , Entropy generation for the blood flow in an artery with multiple stenosis having a catheter Alexandr. Eng. J 2021 5741 5748
Cité par Sources :