Voir la notice de l'article provenant de la source EDP Sciences
M.M. Bhatti 1 ; Sara I. Abdelsalam 2, 3
@article{MMNP_2022_17_a43, author = {M.M. Bhatti and Sara I. Abdelsalam}, title = {Scientific {Breakdown} of a {Ferromagnetic} {Nanofluid} in {Hemodynamics:} {Enhanced} {Therapeutic} {Approach}}, journal = {Mathematical modelling of natural phenomena}, eid = {44}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022045}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/} }
TY - JOUR AU - M.M. Bhatti AU - Sara I. Abdelsalam TI - Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/ DO - 10.1051/mmnp/2022045 LA - en ID - MMNP_2022_17_a43 ER -
%0 Journal Article %A M.M. Bhatti %A Sara I. Abdelsalam %T Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/ %R 10.1051/mmnp/2022045 %G en %F MMNP_2022_17_a43
M.M. Bhatti; Sara I. Abdelsalam. Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 44. doi : 10.1051/mmnp/2022045. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/
[1] Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms Appl. Math. Mech 2020 711 724
,[2] Electromagnetically modulated self-propulsion of swimming sperms via cervical canal Biomech. Model. Mechanobiol 2021 861 878
, ,[3] Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties J. Magn. Magn. Mater 2007 10 16
, , , ,[4] Intra-uterine particle-fluid motion through a compliant asymmetric tapered channel with heat transfer J. Thermal Anal. Calorim 2021 2259 2267
, , ,[5] M.M. Bhatti and S.I. Abdelsalam, Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects, Waves Random Complex Media (2021) 1–26.
[6] TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system Int. J. Numer. Methods Heat Fluid Flow 2020 4775 4796
,[7] Nodal/saddle stagnation-point boundary layer flow of CuO-Ag/water hybrid nanofluid: a novel hybridity model Microsyst. Technolog 2019 2609 2623
[8] Blood flow of nanofluid through an artery with composite stenosis and permeable walls Appl. Nanosci 2014 919 926
, , ,[9] Numerical simulation for Mhd Williamson fluid utilizing modified Darcy’s law Res. Phys 2018 751 759
, , ,[10] Homotopy perturbation technique Comput. Methods Appl. Mech. Eng 1999 257 262
[11] Homotopy perturbation method: a new nonlinear analytical technique Appl. Math. Comput 2003 73 79
[12] B. Jabbaripour, N.M. Rostami, S. Dinarvand and I. Pop, Aqueous aluminium-copper hybrid nanofluid flow past a sinusoidal cylinder considering three-dimensional magnetic field and slip boundary condition, Proc. Inst. Mech. Eng. E (2021) 09544089211046434.
[13] Numerical solution of Mhd stagnation point flow of Williamson fluid model over a stretching cylinder Int. J. Nonlinear Sci. Numer. Simul 2015 161 164
,[14] Pegylated tantalum nanoparticles: a metallic photoacoustic contrast agent for multiwavelength imaging of tumors Small 2019 1903596
, , , , , , , , ,[15] Porous tantalum and tantalum oxide nanoparticles for regenerative medicine Acta Neurobiolog. Exp. (Wars) 2014 188 196
, , , ,[16] Controlled preparation of nanosize cobalt ferrite magnetic particles J. Magn. Magn. Mater 1995 67 71
, ,[17] Dual solutions for Casson hybrid nanofluid flow due to a stretching/shrinking sheet: a new combination of theoretical and experimental models Chin. J. Phys 2021 574 588
, , , , ,[18] Influence of inclined magnetic field on peristaltic flow of a Williamson fluid model in an inclined symmetric or asymmetric channel Math. Comput. Modell 2010 107 119
,[19] Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system J. Magn. Magn. Mater 2005 483 496
, , , ,[20] Nanoparticles of CoxFeyDzO4: synthesis and superparamagnetic properties Eur. Phys. J. B 1999 583 592
, ,[21] High coercivity induced by mechanical milling in cobalt ferrite powders J. Magn. Magn. Mater 2013 182 187
, , , , ,[22] Non-linear blood flow analysis on Mhd peristaltic motion of a Williamson fluid in a micro channel AIP Conf. Proc 2019 020048 10
, , ,[23] Swimming of microbes in blood flow of nano-bioconvective Williamson fluid Thermal Sci. Eng. Progr 2021 101018
, , , , , , ,[24] Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid Ultrasonics 2014 834 840
,[25] Thermal transport of radiative Williamson fluid over stretchable curved surface Therm. Sci. Eng. Progr 2021
, , ,[26] Morphology control of tantalum carbide nanoparticles through dopant additions J. Phys. Chem. C 2021 10665 10675
, , , , , , ,[27] Bio-mathematical analysis of electro-osmotically modulated hemodynamic blood flow inside a symmetric and nonsymmetric stenosed artery with joule heating Int. J. Biomath 2022 2150071
, ,[28] Synthesis and characterization of cobalt nanoparticles using hydrazine and citric acid J. Nanotechnol 2014
, , ,[29] Multi- elemental nanoparticle exposure after tantalum component failure in hip arthroplasty: in-depth analysis of a single case Nanomedicine 2017 2415 2423
, , , , , , , , ,[30] Reddy, The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge Propuls. Power Res 2020 87 99
, ,[31] Biocompatibility of cobalt iron oxide magnetic nanoparticles in male rabbits Korean J. Chem. Eng 2016 2222 2227
, ,[32] Magnetic properties of ultrafine cobalt ferrite particles J. Appi. Phys 2003 7486 7488
, , , , ,[33] Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: a review Open Life Sci 2021 14 30
, , , , , ,[34] Metallic cobalt nanoparticles for heating applications J. Magn. Magn. Mater 2007 224 227
, , , , ,[35] Investigation of cytotoxicity, oxidative stress, and inflammatory responses of tantalum nanoparticles in Thp-1-derived macrophages Med. Inflamm 2020
, , , , , , , , , , ,[36] Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field Eur. Phys. J. Special Topics 2022 521 533
, , , ,[37] Entropy generation for the blood flow in an artery with multiple stenosis having a catheter Alexandr. Eng. J 2021 5741 5748
, , , , ,Cité par Sources :