Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 44.

Voir la notice de l'article provenant de la source EDP Sciences

In this article, we examine the mechanism of cobalt and tantalum nanoparticles through a hybrid fluid model. The nanofluid is propagating through an anisotropically tapered artery with three different configurations: converging, diverging and non-tapered. To examine the rheology of the blood we have incorporated a Williamson fluid model which reveals both Newtonian and non-Newtonian effects. Mathematical and physical formulations are derived using the lubrication approach for continuity, momentum and energy equations. The impact of magnetic field, porosity and viscous dissipation are also taken into the proposed formulation. A perturbation approach is used to determine the solutions of the formulated nonlinear coupled equations. The physical behavior of all the leading parameters is discussed for velocity, temperature, impedance and streamlines profile. The current analysis has the intention to be used in therapeutic treatments of anemia because cobalt promotes the production of red blood cells since it is a component of vitamin B12, this is in addition to having tantalum that is used in the bone implants and in the iodinated agents for blood imaging due to its long circulation time. Moreover, in order to regulate the blood temperature in a living environment, blood temperature monitoring is of utmost necessity in the case of tapering arteries. The management and control of blood mobility at various temperatures may be facilitated by the presence of a magnetic field. The current findings are enhanced to provide important information for researchers in the biomedical sciences who are attempting to analyze blood flow under stenosis settings and who will also find the knowledge useful in the treatment of various disorders.
DOI : 10.1051/mmnp/2022045

M.M. Bhatti 1 ; Sara I. Abdelsalam 2, 3

1 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
2 Instituto de Ciencias Matemáticas ICMAT, CSIC, UAM, UCM, UC3M, Madrid 28049, Spain
3 Basic Science, Faculty of Engineering, The British University in Egypt, Al-Shorouk City, Cairo 11837, Egypt
@article{MMNP_2022_17_a43,
     author = {M.M. Bhatti and Sara I. Abdelsalam},
     title = {Scientific {Breakdown} of a {Ferromagnetic} {Nanofluid} in {Hemodynamics:} {Enhanced} {Therapeutic} {Approach}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {44},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/}
}
TY  - JOUR
AU  - M.M. Bhatti
AU  - Sara I. Abdelsalam
TI  - Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/
DO  - 10.1051/mmnp/2022045
LA  - en
ID  - MMNP_2022_17_a43
ER  - 
%0 Journal Article
%A M.M. Bhatti
%A Sara I. Abdelsalam
%T Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/
%R 10.1051/mmnp/2022045
%G en
%F MMNP_2022_17_a43
M.M. Bhatti; Sara I. Abdelsalam. Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 44. doi : 10.1051/mmnp/2022045. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022045/

[1] S.I. Abdelsalam, M.M. Bhatti Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms Appl. Math. Mech 2020 711 724

[2] S.I. Abdelsalam, J.X. Velasco-Hernandez, A.Z. Zaher Electromagnetically modulated self-propulsion of swimming sperms via cervical canal Biomech. Model. Mechanobiol 2021 861 878

[3] G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, C. Sangregorio Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties J. Magn. Magn. Mater 2007 10 16

[4] M.M. Bhatti, S.Z. Alamri, R. Ellahi, S.I. Abdelsalam Intra-uterine particle-fluid motion through a compliant asymmetric tapered channel with heat transfer J. Thermal Anal. Calorim 2021 2259 2267

[5] M.M. Bhatti and S.I. Abdelsalam, Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects, Waves Random Complex Media (2021) 1–26.

[6] H.S. Chahregh, S. Dinarvand TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system Int. J. Numer. Methods Heat Fluid Flow 2020 4775 4796

[7] S. Dinarvand Nodal/saddle stagnation-point boundary layer flow of CuO-Ag/water hybrid nanofluid: a novel hybridity model Microsyst. Technolog 2019 2609 2623

[8] R. Ellahi, S.U. Rahman, S. Nadeem, N.S. Akbar Blood flow of nanofluid through an artery with composite stenosis and permeable walls Appl. Nanosci 2014 919 926

[9] T. Hayat, S. Ayub, A. Tanveer, A. Alsaedi Numerical simulation for Mhd Williamson fluid utilizing modified Darcy’s law Res. Phys 2018 751 759

[10] J.H. He Homotopy perturbation technique Comput. Methods Appl. Mech. Eng 1999 257 262

[11] J.H. He Homotopy perturbation method: a new nonlinear analytical technique Appl. Math. Comput 2003 73 79

[12] B. Jabbaripour, N.M. Rostami, S. Dinarvand and I. Pop, Aqueous aluminium-copper hybrid nanofluid flow past a sinusoidal cylinder considering three-dimensional magnetic field and slip boundary condition, Proc. Inst. Mech. Eng. E (2021) 09544089211046434.

[13] M.Y. Malik, T. Salahuddin Numerical solution of Mhd stagnation point flow of Williamson fluid model over a stretching cylinder Int. J. Nonlinear Sci. Numer. Simul 2015 161 164

[14] Z.H. Miao, P.Y. Liu, Y.C. Wang, K. Li, D.D. Huang, H.J. Yang, Q.L. Zhao, Z.B. Zha, L. Zhen, C.-Y. Xu Pegylated tantalum nanoparticles: a metallic photoacoustic contrast agent for multiwavelength imaging of tumors Small 2019 1903596

[15] G. Mohandas, N. Oskolkov, M.T. Mcmahon, P. Walczak, M. Janowski Porous tantalum and tantalum oxide nanoparticles for regenerative medicine Acta Neurobiolog. Exp. (Wars) 2014 188 196

[16] N. Moumen, P. Veillet, M.P. Pileni Controlled preparation of nanosize cobalt ferrite magnetic particles J. Magn. Magn. Mater 1995 67 71

[17] S.M. Mousavi, M.N. Rostami, M. Yousefi, S. Dinarvand, I. Pop, M.A. Sheremet Dual solutions for Casson hybrid nanofluid flow due to a stretching/shrinking sheet: a new combination of theoretical and experimental models Chin. J. Phys 2021 574 588

[18] S. Nadeem, S. Akram Influence of inclined magnetic field on peristaltic flow of a Williamson fluid model in an inclined symmetric or asymmetric channel Math. Comput. Modell 2010 107 119

[19] T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B.V. Rechenberg Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system J. Magn. Magn. Mater 2005 483 496

[20] A.T. Ngo, P. Bonville, M.P. Pileni Nanoparticles of CoxFeyDzO4: synthesis and superparamagnetic properties Eur. Phys. J. B 1999 583 592

[21] A.S. Ponce, E.F. Chagas, R.J. Prado, C.H.M. Fernandes, A.J. Terezo, E. Baggio-Saitovitch High coercivity induced by mechanical milling in cobalt ferrite powders J. Magn. Magn. Mater 2013 182 187

[22] J. Prakash, N. Balaji, E.P. Siva, A.D. Chanrasekaran Non-linear blood flow analysis on Mhd peristaltic motion of a Williamson fluid in a micro channel AIP Conf. Proc 2019 020048 10

[23] B.M.J. Rana, S.M. Arifuzzaman, S. Islam, E.-S. Reza-Rabbi, A. Al-Mamun, M. Mazumder, K.C. Roy, M.S. Khan Swimming of microbes in blood flow of nano-bioconvective Williamson fluid Thermal Sci. Eng. Progr 2021 101018

[24] M.N. Rashin, J. Hemalatha Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid Ultrasonics 2014 834 840

[25] R. Raza, F. Mabood, R. Naz, S.I. Abdelsalam Thermal transport of radiative Williamson fluid over stretchable curved surface Therm. Sci. Eng. Progr 2021

[26] T. Ren, R. Tran, S. Lee, A. Bandera, M. Herrera, X. Li, S.P. Ong, O.A. Graeve Morphology control of tantalum carbide nanoparticles through dopant additions J. Phys. Chem. C 2021 10665 10675

[27] A. Saleem, S. Akhtar, S. Nadeem Bio-mathematical analysis of electro-osmotically modulated hemodynamic blood flow inside a symmetric and nonsymmetric stenosed artery with joule heating Int. J. Biomath 2022 2150071

[28] S.A. Salman, T. Usami, K. Kuroda, M. Okido Synthesis and characterization of cobalt nanoparticles using hydrazine and citric acid J. Nanotechnol 2014

[29] J. Schoon, S. Geißler, J. Traeger, A. Luch, J. Tentschert, G. Perino, F. Schulze, G.N. Duda, C. Perka, A. Rakow Multi- elemental nanoparticle exposure after tantalum component failure in hip arthroplasty: in-depth analysis of a single case Nanomedicine 2017 2415 2423

[30] K. Subbarayudu, S. Suneetha, P. Bala Anki Reddy, The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge Propuls. Power Res 2020 87 99

[31] T.A. Tabish, M.N. Ashiq, M.A. Ullah Biocompatibility of cobalt iron oxide magnetic nanoparticles in male rabbits Korean J. Chem. Eng 2016 2222 2227

[32] L.D. Tung, V. Kolesnichenko, D. Caruntu, N.H. Chou, C.J. O’Connor, L. Spinu Magnetic properties of ultrafine cobalt ferrite particles J. Appi. Phys 2003 7486 7488

[33] A. Waris, M. Din, A. Ali, S. Afridi, A. Baset, A.U. Khan, M. Ali Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: a review Open Life Sci 2021 14 30

[34] M. Zeisberger, S. Dutz, R. Muller, R. Hergt, N. Matoussevitch, H. Bönnemann Metallic cobalt nanoparticles for heating applications J. Magn. Magn. Mater 2007 224 227

[35] L. Zhang, E. Haddouti, H. Beckert, R. Biehl, S. Pariyar, J.M. Ruwald, X. Li, M. Jaenisch, C. Burger, D.C. Wirtz, K. Kabir, F.A. Schildberg Investigation of cytotoxicity, oxidative stress, and inflammatory responses of tantalum nanoparticles in Thp-1-derived macrophages Med. Inflamm 2020

[36] L. Zhang, M.M. Bhatti, E.E. Michaelides, M. Marin, R. Ellahi Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field Eur. Phys. J. Special Topics 2022 521 533

[37] A.M. Zidan, L.B. Mccash, S. Akhtar, A. Saleem, A. Issakhov, S. Nadeem Entropy generation for the blood flow in an artery with multiple stenosis having a catheter Alexandr. Eng. J 2021 5741 5748

Cité par Sources :