Hamiltonian form of an Extended Nonlinear Schrödinger Equation for Modelling the Wave field in a System with Quadratic and Cubic Nonlinearities
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 43.

Voir la notice de l'article provenant de la source EDP Sciences

We derive a Hamiltonian form of the fourth-order (extended) nonlinear Schrödinger equation (NLSE) in a nonlinear Klein–Gordon model with quadratic and cubic nonlinearities. This equation describes the propagation of the envelope of slowly modulated wave packets approximated by a superposition of the fundamental, second, and zeroth harmonics. Although extended NLSEs are not generally Hamiltonian PDEs, the equation derived here is a Hamiltonian PDE that preserves the Hamiltonian structure of the original nonlinear Klein–Gordon equation. This could be achieved by expressing the fundamental harmonic and its first derivative in symplectic form, with the second and zeroth harmonics calculated from the variational principle. We demonstrate that the non-Hamiltonian form of the extended NLSE under discussion can be retrieved by a simple transformation of variables.
DOI : 10.1051/mmnp/2022044

Yu. V. Sedletsky 1 ; I.S. Gandzha 1

1 Institute of Physics, National Academy of Sciences of Ukraine, Prosp. Nauky 46, Kyiv 03028, Ukraine
@article{MMNP_2022_17_a42,
     author = {Yu. V. Sedletsky and I.S. Gandzha},
     title = {Hamiltonian form of an {Extended} {Nonlinear} {Schr\"odinger} {Equation} for {Modelling} the {Wave} field in a {System} with {Quadratic} and {Cubic} {Nonlinearities}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {43},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022044/}
}
TY  - JOUR
AU  - Yu. V. Sedletsky
AU  - I.S. Gandzha
TI  - Hamiltonian form of an Extended Nonlinear Schrödinger Equation for Modelling the Wave field in a System with Quadratic and Cubic Nonlinearities
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022044/
DO  - 10.1051/mmnp/2022044
LA  - en
ID  - MMNP_2022_17_a42
ER  - 
%0 Journal Article
%A Yu. V. Sedletsky
%A I.S. Gandzha
%T Hamiltonian form of an Extended Nonlinear Schrödinger Equation for Modelling the Wave field in a System with Quadratic and Cubic Nonlinearities
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022044/
%R 10.1051/mmnp/2022044
%G en
%F MMNP_2022_17_a42
Yu. V. Sedletsky; I.S. Gandzha. Hamiltonian form of an Extended Nonlinear Schrödinger Equation for Modelling the Wave field in a System with Quadratic and Cubic Nonlinearities. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 43. doi : 10.1051/mmnp/2022044. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022044/

[1] M.J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011).

[2] M.J. Ablowitz, G. Biondini, S. Blair Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials Phys. Rev. E 2001 046605

[3] Sh. Amiranashvili, A. Demircan Hamiltonian structure of propagation equations for ultrashort optical pulses Phys. Rev. A 2010 013812

[4] Sh. Amiranashvili, R. Čiegis, M. Radziunas Numerical methods for a class of generalized nonlinear Schrödinger equations Kinet. Relat. Mod. 2015 215 234

[5] D.J. Benney, A.C. Newell The propagation of nonlinear wave envelopes J. Math. Phys. 1967 133 139

[6] T.J. Bridges, M.D. Groves and D.P. Nicholls (eds.), Lectures on the Theory of Water Waves. Cambridge University Press, Cambridge (2016).

[7] T.J. Bridges, S. Reich Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Phys. Lett. A 2001 184 193

[8] A.V. Buryak, P. Di Trapani, D.V. Skryabin, S. Trillo Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications Phys. Rep. 2002 63 235

[9] D. Cline, Variation Principles in Classical Mechanics, University of Rochester, Rochester, 2nd edn. (2018).

[10] W. Craig, P. Guyenne, C. Sulem A Hamiltonian approach to nonlinear modulation of surface water waves Wave Motion 2010 552 563

[11] W. Craig, P. Guyenne, C. Sulem Hamiltonian higher-order nonlinear Schrödinger equations for broader-banded waves on deep water Eur. J. Mech. B/Fluids 2012 22 31

[12] W. Craig, C. Sulem, P.-L. Sulem Nonlinear modulation of gravity waves: a rigorous approach Nonlinearity 1992 497 522

[13] J. Cuevas-Maraver, P.G. Kevrekidis and F. Williams, The Sine–Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Springer, New York (2014).

[14] T. Dauxois, M. Peyrard, C.R. Willis Localized breather-like solution in a discrete Klein–Gordon model and application to DNA Physica D 1992 267 282

[15] D. Dutykh, D. Clamond, M. Chhay Serre-type equations in deep water Math. Model. Nat. Phenom. 2017 23 40

[16] I.S. Gandzha, Yu.V. Sedletsky A high-order nonlinear Schrödinger equation as a variational problem for the averaged Lagrangian of the nonlinear Klein–Gordon equation Nonlin. Dyn. 2019 359 374

[17] P. Germain, F. Pusateri Quadratic Klein–Gordon equations with a potential in one dimension Forum Math. Pi 2022 e17

[18] H. Goldstein, C. Poole and J. Safko, Classical Mechanics. Addison Wesley, San Francisco, 3rd edn. (2001).

[19] O. Gramstad, K. Trulsen Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth J. Fluid Mech. 2011 404 426

[20] P. Guyenne, D.P. Nicholls and C. Sulem (eds.), Hamiltonian Partial Differential Equations and Applications. Springer, New York (2015).

[21] E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (1990).

[22] C.K.R.T. Jones, R. Marangell, P.D. Miller, R.G. Plaza Spectral and modulational stability of periodic wavetrains for the nonlinear Klein–Gordon equation J. Differ. Equ. 2014 4632 4703

[23] A.G. Kalocsai, J.W. Haus Nonlinear Schrödinger equation for opical media with quadratic nonlinearity Phys. Rev. A 1994 574 585

[24] P.G. Kevrekidis and J. Cuevas-Maraver (eds.), A Dynamical Perspective on the ϕ4 Model: Past, Present, and Future. Springer, Cham (2019).

[25] C. Lämmerzahl The pseudodifferential operator square root of the Klein–Gordon equation J. Math. Phys. 1993 3918 3932

[26] H. Leblond, D. Mihalache Models of few optical cycle solitons beyond the slowly varying envelope approximation Phys. Rep. 2013 61 126

[27] V.P. Lukomsky, I.S. Gandzha Two-parameter method for describing the nonlinear evolution of narrow-band wave trains Ukr. J. Phys. 2009 207 215

[28] A.C. Newell, Solitons in Mathematics and Physics. Society for Industrial and Applied Mathematics, Philadelphia (1985).

[29] M. Onorato, S. Residori and F. Baronio (eds.), Rogue and Shock Waves in Nonlinear Dispersive Media. Springer, Cham (2016).

[30] R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. North-Holland, Amsterdam (1987).

[31] R. Sassaman, A. Biswas Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations Commun. Nonlinear Sci. Numer. Simulat. 2009 3239 3246

[32] A. Scott A nonlinear Klein–Gordon equation Am. J. Phys. 1969 52 61

[33] Yu.V. Sedletsky The fourth-order nonlinear Schrodinger equation for the envelope of Stokes waves on the surface of a finite- depth fluid JETP 2003 180 193

[34] Yu.V. Sedletsky A fifth-order nonlinear Schrödinger equation for waves on the surface of finite-depth fluid Ukr. J. Phys. 2021 41 54

[35] Yu.V. Sedletsky, I.S. Gandzha A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains Nonlin. Dyn. 2018 1921 1932

[36] Yu.V. Sedletsky, I.S. Gandzha Relationship between the Hamiltonian and non-Hamiltonian forms of a fourth-order nonlinear Schrödinger equation Phys. Rev. E 2020 202202

[37] I.T. Selezov, Yu.G. Kryvonos and I.S. Gandzha, Spectral methods in the theory of wave propagation, in Wave Propagation and Diffraction: Mathematical Methods and Applications. Foundations in Engineering Mechanics series, Springer, Singapore (2018) 25–75.

[38] A.S. Sharma, B. Buti Envelope solitons and holes for sine–Gordon and nonlinear Klein–Gordon equations J. Phys. A: Math. Gen. 1976 1823 1826

[39] Sirendaoreji Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations Phys. Lett. A 2007 440 447

[40] G. Sterman, An Intorduction to Quantum Field Theory. Cambridge University Press, Cambridge (1993).

[41] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999).

[42] E. Tobisch (ed.), New Approaches to Nonlinear Waves. Springer, Cham (2016).

[43] A.-M. Wazwaz Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations Chaos Solit. Fract. 2006 1005 1013

[44] V.E. Zakharov Stability of periodic waves of finite amplitude on the surface of a deep fluid J. Appl. Mech. Tech. Phys. 1968 190 194

[45] V.E. Zakharov, V.S. L’vov and G. Falkovich, Kolmogorov Spectra of Turbulence I. Wave Turbulence. Springer, Berlin (1992).

Cité par Sources :