Voir la notice de l'article provenant de la source EDP Sciences
Yu. V. Sedletsky 1 ; I.S. Gandzha 1
@article{MMNP_2022_17_a42, author = {Yu. V. Sedletsky and I.S. Gandzha}, title = {Hamiltonian form of an {Extended} {Nonlinear} {Schr\"odinger} {Equation} for {Modelling} the {Wave} field in a {System} with {Quadratic} and {Cubic} {Nonlinearities}}, journal = {Mathematical modelling of natural phenomena}, eid = {43}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022044}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022044/} }
TY - JOUR AU - Yu. V. Sedletsky AU - I.S. Gandzha TI - Hamiltonian form of an Extended Nonlinear Schrödinger Equation for Modelling the Wave field in a System with Quadratic and Cubic Nonlinearities JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022044/ DO - 10.1051/mmnp/2022044 LA - en ID - MMNP_2022_17_a42 ER -
%0 Journal Article %A Yu. V. Sedletsky %A I.S. Gandzha %T Hamiltonian form of an Extended Nonlinear Schrödinger Equation for Modelling the Wave field in a System with Quadratic and Cubic Nonlinearities %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022044/ %R 10.1051/mmnp/2022044 %G en %F MMNP_2022_17_a42
Yu. V. Sedletsky; I.S. Gandzha. Hamiltonian form of an Extended Nonlinear Schrödinger Equation for Modelling the Wave field in a System with Quadratic and Cubic Nonlinearities. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 43. doi : 10.1051/mmnp/2022044. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022044/
[1] M.J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011).
[2] Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials Phys. Rev. E 2001 046605
, ,[3] Hamiltonian structure of propagation equations for ultrashort optical pulses Phys. Rev. A 2010 013812
,[4] Numerical methods for a class of generalized nonlinear Schrödinger equations Kinet. Relat. Mod. 2015 215 234
, ,[5] The propagation of nonlinear wave envelopes J. Math. Phys. 1967 133 139
,[6] T.J. Bridges, M.D. Groves and D.P. Nicholls (eds.), Lectures on the Theory of Water Waves. Cambridge University Press, Cambridge (2016).
[7] Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Phys. Lett. A 2001 184 193
,[8] Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications Phys. Rep. 2002 63 235
, , ,[9] D. Cline, Variation Principles in Classical Mechanics, University of Rochester, Rochester, 2nd edn. (2018).
[10] A Hamiltonian approach to nonlinear modulation of surface water waves Wave Motion 2010 552 563
, ,[11] Hamiltonian higher-order nonlinear Schrödinger equations for broader-banded waves on deep water Eur. J. Mech. B/Fluids 2012 22 31
, ,[12] Nonlinear modulation of gravity waves: a rigorous approach Nonlinearity 1992 497 522
, ,[13] J. Cuevas-Maraver, P.G. Kevrekidis and F. Williams, The Sine–Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Springer, New York (2014).
[14] Localized breather-like solution in a discrete Klein–Gordon model and application to DNA Physica D 1992 267 282
, ,[15] Serre-type equations in deep water Math. Model. Nat. Phenom. 2017 23 40
, ,[16] A high-order nonlinear Schrödinger equation as a variational problem for the averaged Lagrangian of the nonlinear Klein–Gordon equation Nonlin. Dyn. 2019 359 374
,[17] Quadratic Klein–Gordon equations with a potential in one dimension Forum Math. Pi 2022 e17
,[18] H. Goldstein, C. Poole and J. Safko, Classical Mechanics. Addison Wesley, San Francisco, 3rd edn. (2001).
[19] Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth J. Fluid Mech. 2011 404 426
,[20] P. Guyenne, D.P. Nicholls and C. Sulem (eds.), Hamiltonian Partial Differential Equations and Applications. Springer, New York (2015).
[21] E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (1990).
[22] Spectral and modulational stability of periodic wavetrains for the nonlinear Klein–Gordon equation J. Differ. Equ. 2014 4632 4703
, , ,[23] Nonlinear Schrödinger equation for opical media with quadratic nonlinearity Phys. Rev. A 1994 574 585
,[24] P.G. Kevrekidis and J. Cuevas-Maraver (eds.), A Dynamical Perspective on the ϕ4 Model: Past, Present, and Future. Springer, Cham (2019).
[25] The pseudodifferential operator square root of the Klein–Gordon equation J. Math. Phys. 1993 3918 3932
[26] Models of few optical cycle solitons beyond the slowly varying envelope approximation Phys. Rep. 2013 61 126
,[27] Two-parameter method for describing the nonlinear evolution of narrow-band wave trains Ukr. J. Phys. 2009 207 215
,[28] A.C. Newell, Solitons in Mathematics and Physics. Society for Industrial and Applied Mathematics, Philadelphia (1985).
[29] M. Onorato, S. Residori and F. Baronio (eds.), Rogue and Shock Waves in Nonlinear Dispersive Media. Springer, Cham (2016).
[30] R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. North-Holland, Amsterdam (1987).
[31] Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations Commun. Nonlinear Sci. Numer. Simulat. 2009 3239 3246
,[32] A nonlinear Klein–Gordon equation Am. J. Phys. 1969 52 61
[33] The fourth-order nonlinear Schrodinger equation for the envelope of Stokes waves on the surface of a finite- depth fluid JETP 2003 180 193
[34] A fifth-order nonlinear Schrödinger equation for waves on the surface of finite-depth fluid Ukr. J. Phys. 2021 41 54
[35] A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains Nonlin. Dyn. 2018 1921 1932
,[36] Relationship between the Hamiltonian and non-Hamiltonian forms of a fourth-order nonlinear Schrödinger equation Phys. Rev. E 2020 202202
,[37] I.T. Selezov, Yu.G. Kryvonos and I.S. Gandzha, Spectral methods in the theory of wave propagation, in Wave Propagation and Diffraction: Mathematical Methods and Applications. Foundations in Engineering Mechanics series, Springer, Singapore (2018) 25–75.
[38] Envelope solitons and holes for sine–Gordon and nonlinear Klein–Gordon equations J. Phys. A: Math. Gen. 1976 1823 1826
,[39] Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations Phys. Lett. A 2007 440 447
[40] G. Sterman, An Intorduction to Quantum Field Theory. Cambridge University Press, Cambridge (1993).
[41] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999).
[42] E. Tobisch (ed.), New Approaches to Nonlinear Waves. Springer, Cham (2016).
[43] Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations Chaos Solit. Fract. 2006 1005 1013
[44] Stability of periodic waves of finite amplitude on the surface of a deep fluid J. Appl. Mech. Tech. Phys. 1968 190 194
[45] V.E. Zakharov, V.S. L’vov and G. Falkovich, Kolmogorov Spectra of Turbulence I. Wave Turbulence. Springer, Berlin (1992).
Cité par Sources :