Predators as a possible strategy for controlling a Xylella epidemic?
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 42.

Voir la notice de l'article provenant de la source EDP Sciences

In Southern Italy, since 2013, there has been an ongoing Olive Quick Decline Syndrome (OQDS) outbreak, due to the bacterium Xylella fastidiosa, which has caused a dramatic impact from both socio-economic and environmental points of view. Current agronomic practices are mainly based on uprooting the sick olive trees and their surrounding ones, with later installment of olive cultivars more resistant to the bacterium infection. Unfortunately, both of these practices are having an undesirable impact on the environment and on the economy. Here, a spatially structured mathematical model has been proposed to include a predator Zelus renardii as a possible biocontrol agent of the Xylella epidemic. The fact that Z. renardii has been reported to be a generalist predator implies that its introduction is not an efficient control strategy to eradicate a Xylella epidemic. Instead, a specialist predator, whenever identified, would lead to the eventual eradication of a Xylella epidemic. In either cases it has been confirmed that a significant reduction of the weed biomass can lead to the eradication of the vector population, hence of a Xylella epidemic, independently of the presence of predators.
DOI : 10.1051/mmnp/2022043

S. Anita 1, 2 ; V. Capasso 3 ; M. Montagna 4 ; S. Scacchi 5

1 Faculty of Mathematics, “Alexandru Ioan Cuza” University of Iaşi, Iaşi 700506, Romania
2 “Octav Mayer” Institute of Mathematics of the Romanian Academy, Iaşi 700506, Romania
3 ADAMSS, Università degli Studi di Milano “La Statale”, 20133 Milano, Italy
4 Department of Agricultural Sciences, Università degli Studi di Napoli “Federico II”, 80055 Napoli, Italy
5 Department of Mathematics, Università degli Studi di Milano “La Statale”, 20133 Milano, Italy
@article{MMNP_2022_17_a41,
     author = {S. Anita and V. Capasso and M. Montagna and S. Scacchi},
     title = {Predators as a possible strategy for controlling a {Xylella} epidemic?},
     journal = {Mathematical modelling of natural phenomena},
     eid = {42},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022043/}
}
TY  - JOUR
AU  - S. Anita
AU  - V. Capasso
AU  - M. Montagna
AU  - S. Scacchi
TI  - Predators as a possible strategy for controlling a Xylella epidemic?
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022043/
DO  - 10.1051/mmnp/2022043
LA  - en
ID  - MMNP_2022_17_a41
ER  - 
%0 Journal Article
%A S. Anita
%A V. Capasso
%A M. Montagna
%A S. Scacchi
%T Predators as a possible strategy for controlling a Xylella epidemic?
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022043/
%R 10.1051/mmnp/2022043
%G en
%F MMNP_2022_17_a41
S. Anita; V. Capasso; M. Montagna; S. Scacchi. Predators as a possible strategy for controlling a Xylella epidemic?. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 42. doi : 10.1051/mmnp/2022043. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022043/

[1] R.P.P. Almeida, M.J. Blua, J.R.S. Lopes, A.H. Purcell Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies 2005 775 786

[2] S. Anita, V. Capasso A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally) 2009 2026 2035

[3] S. Anita, V. Capasso, S. Scacchi Controlling the spatial spread of a Xylella epidemic 2021 32

[4] S. Anita, J. Casas, C. Suppo Impulsive spatial control of invading pests by generalist predators 2014 284 301

[5] E. Beretta, V. Capasso, S. Scacchi, M. Brunetti, M. Montagna Prevention and control of OQDS (olive quick decline syndrome) outbreaks caused by Xylella fastidiosa 2022 111118

[6] H. Brezis, Sobolev Spaces and Partial Differential Equations. Springer (2011).

[7] M. Brunetti, V. Capasso, M. Montagna, E. Venturino A mathematical model for Xylella fastidiosa epidemics in the Mediterranean regions. Promoting good agronomic practices for their effective control 2020 109204

[8] V. Capasso Asymptotic stability for an integro-differential reaction-diffusion system 1984 575 588

[9] A. Carlucci, F. Lops, G. Marchi, L. Mugnai, G. Surico Has Xylella fastidiosa “chosen” olive trees to establish in the Mediterranean basin? 2013 541 544

[10] D. Cornara, V. Cavalieri, C. Dongiovanni, G. Altamura, F. Palmisano, D. Bosco, F. Porcelli, R.P.P. Almeida, M. Saponari Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants 2017 80 87

[11] L.R. Davranoglou Zelus renardii (Kolenati, 1856), a New World reduviid discovered in Europe (Hemiptera: Reduviidae: Harpactorinae) 2011 157 162

[12] T. Elbaino, T. Yaseen, F. Valentini, I.E. Ben Moussa, V. Mazzoni, A.M. D'Onghia Identification of three potential insect vectors of Xylella fastidiosa in Southern Italy 2014 328 332

[13] J.D. Janse, A. Obradovic Xylella fastidiosa: its biology, diagnosis, control and risks (Minireview) 2010 S1.35 S1.48

[14] N. Lahbib Zelus renardii roaming in Southern Italy 2022 158

[15] M.A. Lewis, S.V. Petrovskii and J.R. Potts, The Mathematics Behind Biological Invasions. Springer (2016).

[16] A. Liccardi, A. Fierro, F. Garganese, U. Picciotti, F. Porcelli A biological control model to manage the vector and the infection of Xylella fastidiosa on olive trees 2020 e0232363

[17] P.M. Matricardi, R.W. Dal Negro, R. Nisini The first holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures 2020 454 470

[18] A. Quarteroni and A. Valli, A Numerical Approximation of Partial Differential Equations. Springer (1994).

[19] R.A. Redak, A.H. Purcell, J.R.S. Lopes, M.J. Blua, R.F. Mizell, P.C. Andersen The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology, applying fundamental knowledge to generate disease management 2004 243 270

[20] M. Saponari, D. Boscia, F. Nigro, G.P. Martelli Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy) 2013 659 668

[21] K. Schneider, W. Van Der Werf, M. Cendoya, M. Maurits, J.A. Navas-Cortes Impact of Xylella fastidiosa subspecies pauca in European olives 2020 9250 9259

[22] P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis. Princeton University Press (2003).

Cité par Sources :