Mathematical modelling in nonlocal Mindlin’s strain gradient thermoelasticity with voids
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 41.

Voir la notice de l'article provenant de la source EDP Sciences

A nonlocal theory for thermoelastic materials with voids based on Mindlin’s strain gradient theory was derived in this paper with some qualitative properties. We have also established the size effect of nonlocal heat conduction with the aids of extended irreversible thermodynamics and generalized free energy. The obtained system of equations is a coupling of three equations with higher gradients terms due to the length scale parameters ϖ and l. This poses some new mathematical difficulties due to the lack of regularity. Based on nonlinear semigroups and the theory of monotone operators, we establish existence and uniqueness of weak and strong solutions to the one dimensional problem. By an approach based on the Gearhart-Herbst-Prüss-Huang theorem, we prove that the associated semigroup is exponentially stable; but not analytic.
DOI : 10.1051/mmnp/2022042

Moncef Aouadi 1, 2

1 Université de Carthage, Ecole Nationale d’Ingénieurs de Bizerte, 7035, BP66, Tunisia
2 UR Systémes dynamiques et applications, UR 17ES21, Bizerte, Tunisia
@article{MMNP_2022_17_a13,
     author = {Moncef Aouadi},
     title = {Mathematical modelling in nonlocal {Mindlin{\textquoteright}s} strain gradient thermoelasticity with voids},
     journal = {Mathematical modelling of natural phenomena},
     eid = {41},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022042/}
}
TY  - JOUR
AU  - Moncef Aouadi
TI  - Mathematical modelling in nonlocal Mindlin’s strain gradient thermoelasticity with voids
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022042/
DO  - 10.1051/mmnp/2022042
LA  - en
ID  - MMNP_2022_17_a13
ER  - 
%0 Journal Article
%A Moncef Aouadi
%T Mathematical modelling in nonlocal Mindlin’s strain gradient thermoelasticity with voids
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022042/
%R 10.1051/mmnp/2022042
%G en
%F MMNP_2022_17_a13
Moncef Aouadi. Mathematical modelling in nonlocal Mindlin’s strain gradient thermoelasticity with voids. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 41. doi : 10.1051/mmnp/2022042. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022042/

[1] M. Aouadi, F. Passarella, V. Tibullo Exponential stability in Mindlin’s Form II gradient thermoelasticity with microtemperatures of type III 2020 20200459

[2] M. Aouadi, A. Amendola, V. Tibullo Asymptotic behavior in Form II Mindlin’s strain gradient theory for porous thermoelastic diffusion materials 2020 191 209

[3] M. Aouadi Micro-inertia effects on existence of attractors for Form II Mindlin’s strain gradient viscoelastic plate 2021 52

[4] M. Bachher, N. Sarkar Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer 2019 595 613

[5] V. Barbu Nonlinear differential equations of monotone types in Banach spaces Springer Monographs in Mathematics. 2010

[6] S. Biswas, The propagation of plane waves in nonlocal visco-thermoelastic porous medium based on nonlocal strain gradient theory. Waves Random Complex Media. (2021) https://doi.org/10.1080/17455030.2021.1909780.

[7] S. Biswas Surface waves in porous nonlocal thermoelastic orthotropic medium 2020 2741 2760

[8] P.S. Casas, R. Quintanilla Exponential decay in one-dimensional porous-thermo-elasticity 2005 652 658

[9] W.L. Chan, R.S. Averback, D.G. Cahill, A. Lagoutchev Dynamics of femtosecond laser-induced melting of silver 2008 214107

[10] I. Chueshov, M. Eller, I. Lasiecka On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation 2002 1901 1951

[11] A.C. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves 1983 4703 4710

[12] A.C. Eringen, Nonlocal continuum field theories. Springer, USA (2002).

[13] J.R. Fernandez, A. Magana, M. Masid, R. Quintanilla Analysis for the strain gradient theory of porous thermoelasticity 2019 247 268

[14] L. Gearhart Spectral theory for contraction semigroups on Hilbert space 1978 385 385

[15] P. Grisvard Caracterization de quelques espaces d’interpolation 1967 40 63

[16] Y.Y. Guo, M.R. Wang Phonon hydrodynamics and its applications in nanoscale heat transfer 2015 1 44

[17] R.A. Guyer, J.A. Krumhansl Solution of the linearized phonon Boltzmann equation 1966 765 778

[18] D. Iesan, Thermoelastic Models of Continua. Springer (2004).

[19] D. Iesan A gradient theory of porous elastic solids 2020 1 18

[20] D. Iesan On the grade consistent theories of micromorphic solids 2011 130 149

[21] Y. Jun Yu, X. Tian, J. Liu Size-dependent damping of a nanobeam using nonlocal thermoelasticity: extension of Zener, Lifshitz, and Roukes’ damping model 2017 1287 1302

[22] I. Lacheheb, S.A. Messaoudi, M. Zahri Asymptotic stability of porous-elastic system with thermoelasticity of type III 2021 137 155

[23] G. Lebon, M. Torrisi, A. Valenti A non-local thermodynamic analysis of second sound propagation in crystalline dielectrics 1995 1461 1474

[24] C.W. Lim, G. Zhang, J.N. Reddy A Higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation 2015 298 313

[25] Z. Liu, S. Zheng Semigroups associated with dissipative systems CRC Research Notes in mathematics. 1999

[26] A. Maganna, R. Quintanilla On the time decay of solutions in one-dimensional theories of porous materials 2006 3414 3427

[27] R. Mindlin Micro-structure in linear elasticity 1964 52 78

[28] R. Mindlin Second gradient of strain and surface-tension in linear elasticity 1965 414 438

[29] A. Pazy Semigroups of Linear Operators and Applications to Partial Differential Equations Applied Mathematical Sciences 1983

[30] J. Prüss On the spectrum of Co-semigroups 1984 847 847

[31] J.N. Reddy, A.R. Srinivasa Nonlinear theories of beams and plates accounting for moderate rotations and material length scales 2014 43 53

[32] N. Sarkar, S.K. Tomar Plane waves in nonlocal thermoelastic solid with voids 2019 580 606

[33] H. Shahraki, H.T. Riahi, M. Izadinia, S.B. Talaeitaba Mindlin’s strain gradient theory for vibration analysis of FG-CNT- reinforced composite nanoplates resting on Kerr foundation in thermal environment 2021 68 101

[34] X. Tian, Q. Xiong Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity 2016 238 253

[35] D.Y. Tzou, Macro-to micro-scale heat transfer: the lagging behavior. CRC Press (1996).

[36] W. Yang, Z. Chen Nonlocal dual-phase-lag heat conduction and the associated nonlocal thermal-viscoelastic analysis 2020 119 752

[37] A.M. Zenkour, A.F. Radwan A nonlocal strain gradient theory for porous functionally graded curved nanobeams under different boundary conditions 2020 601 615

[38] P. Zhang, H. Qing The consistency of the nonlocal strain gradient integral model in size-dependent bending analysis of beam structures 2021 105 991

Cité par Sources :