The Normal Velocity of the Population Front in the “Predator–Prey” Model
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 36.

Voir la notice de l'article provenant de la source EDP Sciences

The propagation of one and two-dimensional waves of populations are numerically investigated in the framework of the “predator-prey” model with the Arditi - Ginzburg trophic function. The propagation of prey and predator population waves and the propagation of co-existing populations’ waves are considered. The simulations demonstrate that even in the case of an unstable quasi-equilibrium state of the system, which is established behind the front of a traveling wave, the propagation velocity of the joint population wave is a well-defined function. The calculated average propagation velocity of a cellular non-stationary wave front is determined uniquely for a given set of problem parameters. The estimations of the wave propagation velocity are obtained for both the case of a plane and cellular wave fronts of populations. The structure and velocity of outward propagating circular cellular wave are investigated to clarify the local curvature and scaling effects on the wave dynamics.
DOI : 10.1051/mmnp/2022039

Evgeniy Dats 1, 2 ; Sergey Minaev 3 ; Vladimir Gubernov 3 ; Junnosuke Okajima 4

1 Laboratory of Computational Informatics, Institute of Applied mathematics FEB RAS, 69041 Vladivostok, Russia
2 Department of Mathematics and Modelling, Vladivostok State University of Economics and Service, 69014 Vladivostok, Russia
3 Laboratory of Nonlinear Dynamics and Theoretical Biophysics, P.N. Lebedev Physical Institute RAS, 119991 Moscow, Russia
4 Institute of Fluid Science, Tohoku University, Sendai, Japan
@article{MMNP_2022_17_a37,
     author = {Evgeniy Dats and Sergey Minaev and Vladimir Gubernov and Junnosuke Okajima},
     title = {The {Normal} {Velocity} of the {Population} {Front} in the {{\textquotedblleft}Predator{\textendash}Prey{\textquotedblright}} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {36},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022039/}
}
TY  - JOUR
AU  - Evgeniy Dats
AU  - Sergey Minaev
AU  - Vladimir Gubernov
AU  - Junnosuke Okajima
TI  - The Normal Velocity of the Population Front in the “Predator–Prey” Model
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022039/
DO  - 10.1051/mmnp/2022039
LA  - en
ID  - MMNP_2022_17_a37
ER  - 
%0 Journal Article
%A Evgeniy Dats
%A Sergey Minaev
%A Vladimir Gubernov
%A Junnosuke Okajima
%T The Normal Velocity of the Population Front in the “Predator–Prey” Model
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022039/
%R 10.1051/mmnp/2022039
%G en
%F MMNP_2022_17_a37
Evgeniy Dats; Sergey Minaev; Vladimir Gubernov; Junnosuke Okajima. The Normal Velocity of the Population Front in the “Predator–Prey” Model. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 36. doi : 10.1051/mmnp/2022039. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022039/

[1] R. Arditi, L.R. Ginzburg Coupling in predator-prey dynamics: ratio-dependence J. Theor. Biol. 1989 311 326

[2] M. Banerjee, S. Petrovskii Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system Theoret. Ecol. 2010 37 53

[3] J.R. Beddington Mutual interference between parasites or predators and its effect on searching efficiency J. Anim. Ecol. 1975 331 340

[4] A.P. Bonney , Phytoplankton. Edward Arnold, London (1975), p. 212.

[5] S. Busenberg, S.K. Kumar, P. Austin, G. Wake The dynamics of a model of plankton-nutrient interaction Bull. Math. Biol. 1990 677 696

[6] D.L. Deangelis, R.A. Goldstein, O'R.V. Neill A model for trophic interaction Ecology 1975 881 892

[7] C.A. Edwards, H.P. Batchelder, T.M. Powell Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system J. Plankton Res. 2000 1619 1648

[8] G.T. Evans, J.S. Parslow A model of annual plankton cycles Biol. Oceanogr. 1985 327 347

[9] M.J.R. Fasham, Modelling the marine biota, in: The Global Carbon Cycle, edited by M. Heimann. Springer-Verlag, Berlin (1993) 457–504.

[10] R.A. Fisher The wave of advance of advantageous genes Ann. Eugenics 1937 355 369

[11] P.J.S. Franks, J.S. Wroblewski, G.R. Flierl Behavior of a simple plankton model with food-level acclimation by herbivores Mar. Biol. 1986 121 129

[12] R.V. Fursenko, K.L. Pan, S.S. Minaev Noise influence on pole solutions of the Sivashinsky equation for planar and outward propagating flames Phys. Rev. E 2008 056301

[13] R. Fursenko, S. Minaev, H. Nakamura, T. Tezuka, S. Hasegawa, K. Takase, X. Li, M. Katsuta, M. Kikuchi, K. Maruta Cellular and sporadic flame regimes of low-Lewis-number stretched premixed flames Proc. Combust. Inst. 2013 981 988

[14] A.R. Kerstein, W.T. Ashurst, F.A. Williams Field equation for interface propagation in an unsteady homogeneous flow field Phys. Rev. A 1988 2728

[15] W.W. Gregg, M.E. Conkright Decadal changes in global ocean chlorophyll Geophys. Res. Lett. 2002 17 30

[16] R. Han, B. Dai Cross-diffusion induced turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response Int. J. Bifurc. Chaos 2017 1750088

[17] A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem Bull. Moscow State Univ. Ser. A 1937 1 25

[18] C.E. Lucas The ecological effects of external metabolites Biol. Rev. Cambr. Philo. Soc. 1947 270 295

[19] H. Malchow Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system J. Mar. Syst. 1996 193 202

[20] G.H. Markstein, Nonsteady Flame Propagation. Pergamon Press, Oxford (1964).

[21] G.A. Riley Theoretical analysis of the zooplankton population of Georges Bank J. Mar. Res. 1947 104 113

[22] S. Roy, D.S. Broomhead, T. Platt, S. Sathyendranath, S. Ciavatta Sequential variations of phytoplankton growth and mortality in an NPZ model: a remote-sensing-based assessment J. Mar. Syst. 2012 16 29

[23] L. Segel Dissipative structure: an explanation and an ecological example J. Theor. Biol. 1972 545 559

[24] Yu.M. Svirezhev Nonlinearity in mathematical ecology: phenomena and models. Would we live in Volterra’s world? Ecol. Model. 2008 89 101

[25] J.C. Tannehill, R.H. Pletcher and D.A. Anderson, Computational fluid mechanics and heat transfer. Taylor Francis, Bristol, PA (1997).

[26] R.V. Thomann, D.M. Di Toro, R.P. Winfield and O’D.J. Connor, Mathematical modeling of phytoplankton in Lake Ontario. Model development and verification. EPA- 660/3-75-005, Ecological Research Series (1975) 177.

[27] Yu.V. Tyutyunov, L.I. Titova From Lotka—Volterra to Arditi—Ginzburg: 90 years of evolving trophic functions Biol. Bull. Rev. 2020 167 185

[28] R. Upadhyay, V. Volpert, N. Thakur Propagation of Turing patterns in a plankton model J. Biolog. Dyn. 2012 524 538

[29] F.A. Williams, Combustion theory. CRC Press (1985) 708.

Cité par Sources :