Voir la notice de l'article provenant de la source EDP Sciences
Evgeniy Dats 1, 2 ; Sergey Minaev 3 ; Vladimir Gubernov 3 ; Junnosuke Okajima 4
@article{MMNP_2022_17_a37, author = {Evgeniy Dats and Sergey Minaev and Vladimir Gubernov and Junnosuke Okajima}, title = {The {Normal} {Velocity} of the {Population} {Front} in the {{\textquotedblleft}Predator{\textendash}Prey{\textquotedblright}} {Model}}, journal = {Mathematical modelling of natural phenomena}, eid = {36}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022039}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022039/} }
TY - JOUR AU - Evgeniy Dats AU - Sergey Minaev AU - Vladimir Gubernov AU - Junnosuke Okajima TI - The Normal Velocity of the Population Front in the “Predator–Prey” Model JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022039/ DO - 10.1051/mmnp/2022039 LA - en ID - MMNP_2022_17_a37 ER -
%0 Journal Article %A Evgeniy Dats %A Sergey Minaev %A Vladimir Gubernov %A Junnosuke Okajima %T The Normal Velocity of the Population Front in the “Predator–Prey” Model %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022039/ %R 10.1051/mmnp/2022039 %G en %F MMNP_2022_17_a37
Evgeniy Dats; Sergey Minaev; Vladimir Gubernov; Junnosuke Okajima. The Normal Velocity of the Population Front in the “Predator–Prey” Model. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 36. doi : 10.1051/mmnp/2022039. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022039/
[1] Coupling in predator-prey dynamics: ratio-dependence J. Theor. Biol. 1989 311 326
,[2] Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system Theoret. Ecol. 2010 37 53
,[3] Mutual interference between parasites or predators and its effect on searching efficiency J. Anim. Ecol. 1975 331 340
[4] A.P. Bonney , Phytoplankton. Edward Arnold, London (1975), p. 212.
[5] The dynamics of a model of plankton-nutrient interaction Bull. Math. Biol. 1990 677 696
, , ,[6] A model for trophic interaction Ecology 1975 881 892
, ,[7] Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system J. Plankton Res. 2000 1619 1648
, ,[8] A model of annual plankton cycles Biol. Oceanogr. 1985 327 347
,[9] M.J.R. Fasham, Modelling the marine biota, in: The Global Carbon Cycle, edited by M. Heimann. Springer-Verlag, Berlin (1993) 457–504.
[10] The wave of advance of advantageous genes Ann. Eugenics 1937 355 369
[11] Behavior of a simple plankton model with food-level acclimation by herbivores Mar. Biol. 1986 121 129
, ,[12] Noise influence on pole solutions of the Sivashinsky equation for planar and outward propagating flames Phys. Rev. E 2008 056301
, ,[13] Cellular and sporadic flame regimes of low-Lewis-number stretched premixed flames Proc. Combust. Inst. 2013 981 988
, , , , , , , , ,[14] Field equation for interface propagation in an unsteady homogeneous flow field Phys. Rev. A 1988 2728
, ,[15] Decadal changes in global ocean chlorophyll Geophys. Res. Lett. 2002 17 30
,[16] Cross-diffusion induced turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response Int. J. Bifurc. Chaos 2017 1750088
,[17] Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem Bull. Moscow State Univ. Ser. A 1937 1 25
, ,[18] The ecological effects of external metabolites Biol. Rev. Cambr. Philo. Soc. 1947 270 295
[19] Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system J. Mar. Syst. 1996 193 202
[20] G.H. Markstein, Nonsteady Flame Propagation. Pergamon Press, Oxford (1964).
[21] Theoretical analysis of the zooplankton population of Georges Bank J. Mar. Res. 1947 104 113
[22] Sequential variations of phytoplankton growth and mortality in an NPZ model: a remote-sensing-based assessment J. Mar. Syst. 2012 16 29
, , , ,[23] Dissipative structure: an explanation and an ecological example J. Theor. Biol. 1972 545 559
[24] Nonlinearity in mathematical ecology: phenomena and models. Would we live in Volterra’s world? Ecol. Model. 2008 89 101
[25] J.C. Tannehill, R.H. Pletcher and D.A. Anderson, Computational fluid mechanics and heat transfer. Taylor Francis, Bristol, PA (1997).
[26] R.V. Thomann, D.M. Di Toro, R.P. Winfield and O’D.J. Connor, Mathematical modeling of phytoplankton in Lake Ontario. Model development and verification. EPA- 660/3-75-005, Ecological Research Series (1975) 177.
[27] From Lotka—Volterra to Arditi—Ginzburg: 90 years of evolving trophic functions Biol. Bull. Rev. 2020 167 185
,[28] Propagation of Turing patterns in a plankton model J. Biolog. Dyn. 2012 524 538
, ,[29] F.A. Williams, Combustion theory. CRC Press (1985) 708.
Cité par Sources :