Voir la notice de l'article provenant de la source EDP Sciences
A. Camacho 1 ; E. Díaz-Ocampo 2 ; S. Jerez 3
@article{MMNP_2022_17_a15, author = {A. Camacho and E. D{\'\i}az-Ocampo and S. Jerez}, title = {Optimal control for a bone metastasis with radiotherapy model using a linear objective functional}, journal = {Mathematical modelling of natural phenomena}, eid = {32}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022038}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022038/} }
TY - JOUR AU - A. Camacho AU - E. Díaz-Ocampo AU - S. Jerez TI - Optimal control for a bone metastasis with radiotherapy model using a linear objective functional JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022038/ DO - 10.1051/mmnp/2022038 LA - en ID - MMNP_2022_17_a15 ER -
%0 Journal Article %A A. Camacho %A E. Díaz-Ocampo %A S. Jerez %T Optimal control for a bone metastasis with radiotherapy model using a linear objective functional %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022038/ %R 10.1051/mmnp/2022038 %G en %F MMNP_2022_17_a15
A. Camacho; E. Díaz-Ocampo; S. Jerez. Optimal control for a bone metastasis with radiotherapy model using a linear objective functional. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 32. doi : 10.1051/mmnp/2022038. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022038/
[1] Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy Discr. Continu. Dyn. Syst. B 2019 2017
, , ,[2] J.W. Bachman and T. Hillen , Mathematical optimization of the combination of radiation and differentiation therapies for cancer. Front. Oncol. 3 (2013). https://doi.org/10.3389/fonc.2013.00052
[3] The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence Nat. Rev. Cancer 2015 409 425
, , ,[4] Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype Nat. Rev. Cancer 2009 134 142
, , , , , ,[5] The failures and challenges of bone metastases research in radiation oncology J. Bone Oncol. 2013 84 88
,[6] F.J. Bonnans , D. Giorgi , V. Grelard , B. Heymann , S. Maindrault , P. Martinon , O. Tissot and J. Liu , Bocop – a collection of examples. INRIA (2017).
[7] B. Bonnard and M. Chyba , Vol. 40 of Singular trajectories and their role in control theory. Springer-Verlag (2003).
[8] The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction Semin. Radiat. Oncol. 2008 234 239
[9] Optimal weekly scheduling in fractionated radiotherapy: effect of an upper bound on the dose fraction size J. Math. Biol. 2015 361 398
, , ,[10] Bone metastasis treatment modeling via optimal control J. Math. Biol. 2019 497 552
,[11] Nonlinear modeling and control strategies for bone diseases based on TGFβ and Wnt factors Commun. Nonlinear Sci. Numer. Simul. 2021 105842
,[12] PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival Bone 2014 33 40
, , , , , ,[13] Suppression of sclerostin alleviates radiation-induced bone loss by protecting bone-forming cells and their progenitors through distinct mechanisms J. Bone Mineral Res. 2017 360 372
, , , , , , , , , , , ,[14] Bone metastasis: histological changes and pathophysiological mechanisms in osteolytic or osteosclerotic localizations. A review Morphologie 2011 65 75
, , , ,[15] Palliative radiotherapy trials for bone metastases: a systematic review J. Clinic. Oncol. 2007 1423 1436
, , , ,[16] Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls Math. Biosci. 2007 292 315
, , , , , ,[17] R. Di Franco , S. Falivene , V. Ravo and P. Muto , Radiotherapy for the Treatment of Bone Metastases, in Interventional Neuroradiology of the Spine, edited by M. Muto . Springer, Milano (2013) pp. 221–230.
[18] Mathematical modelling of radiotherapy strategies for early breast cancer J. Theor. Biol. 2006 158 171
, , , ,[19] Optimal scheduling of radiotherapy and angiogenic inhibitors Bull. Math. Biol. 2003 407 424
, ,[20] W. Fleming and R. Rishel , Deterministic and Stochastic Optimal Control. Springer-Verlag, New York (1975).
[21] 21 years of biologically effective dose Br. J. Radiol. 2010 554 568
[22] A mixed radiotherapy and chemotherapy model for treatment of cancer with metastasis Math. Methods Appl. Sci. 2016 4603 4617
, ,[23] External beam radiation therapy for orthopaedic pathology J. Am. Acad. Orthopaed. Surg. 2015 243 252
, , , ,[24] W.S. Hong , S.G. Wang and G.Q. Zhang , Lung cancer radiotherapy: simulation and analysis based on a multicomponent mathematical model. Comput. Math. Methods Med. 2021 (2021) Article 6640051.
[25] Bone metastasis modeling based on the interactions between the BMU and tumor cells J. Comput. Appl. Math. 2018 866 876
,[26] S. Jerez , E. Pliego , F.J. Solís and A.K. Miller , Antigen receptor therapy in bone metastasis via optimal control for different human life stages. J. Math. Biol. 83 (2021) Article 24.
[27] Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling Bone 2003 206 215
, , , ,[28] New therapeutic targets for cancer bone metastasis Trends Pharmacolog. Sci. 2015 360 373
,[29] Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy Math. Biosci. 2007 320 342
,[30] Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy Math. Biosci. Eng. 2011 307 323
, ,[31] Optimal response to chemotherapy for a mathematical model of tumor–immune dynamics J. Math. Biol. 2012 557 577
, ,[32] Optimal combined radio- and anti-angiogenic cancer therapy J. Optim. Theory Appl. 2019 321 340
, ,[33] Optimal and receding horizon control of tumor growth in myeloma bone disease Biomed. Signal Process. Control 2016 128 134
, , ,[34] S. Lenhart and J.T. Workman , Optimal control applied to biological models. CRC Press (2007).
[35] The role of radiation therapy in controlling painful bone metastases Curr. Pain Headache Rep. 2012 300 306
[36] Convergence of the forward-backward sweep method in optimal control Comput. Optim. Appl. 2012 207 226
, ,[37] Metastasis to bone: causes, consequences and therapeutic opportunities Nat. Rev. Cancer 2002 584 593
[38] The role of osteoblasts in bone metastasis J. Bone Oncol. 2016 124 127
[39] The distribution of secondary growths in cancer of the breast The Lancet 1889 571 573
[40] Predicting patient-specific radiotherapy protocols based on mathematical model choice for proliferation saturation index Bull. Math. Biol. 2018 1195 1206
, , , , ,[41] L.S. Pontryagin , Mathematical theory of optimal processes. CRC Press (1987).
[42] Optimal control for a mathematical model of glioma treatment with oncolytic therapy and TNF-α inhibitor J. Optim. Theory Appl. 2018 456 477
, ,[43] On a multiobjective optimal control of a tumor growth model with immune response and drug therapies Int. Trans. Oper. Res. 2018 269 294
, ,[44] A mathematical model for brain tumor response to radiation therapy J. Math. Biol. 2009 561 578
, , ,[45] H. Schättler and U. Ledzewicz , Optimal control for mathematical models of cancer therapies. Springer-Verlag, New York (2015).
[46] Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy Cancer Res. 2016 4931 4940
, , , , , ,[47] Role of optimal control theory in cancer chemotherapy Math. Biosci. 1990 237 284
[48] A. Swierniak , Control problems arising in combined antiangiogenic therapy and radiotherapy, in Proc. 5 IASTED Conf. on Biomedical Engineering (2007) 113–117.
[49] Team Commands, Inria Saclay (2017). BOCOP: an open source toolbox for optimal control. http://bocop.org
[50] Incidence and treatment patterns of complicated bone metastases in a population-based radiotherapy program Radiother. Oncol. 2016 552 556
, , , ,[51] The unresolved role of systemic factors in bone metastasis J. Bone Oncol. 2016 96 99
,[52] Pain control by ionizing radiation of bone metastasis Int. J. Dev. Biol. 2004 599 606
,[53] On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming Math. Program. 2006 25 57
,[54] Fractionated follow-up chemotherapy delays the onset of resistance in bone metastatic prostate cancer Games 2018 19
, , , ,[55] Optimization of radiotherapy dose-time fractionation with consideration of tumor specific biology Med. Phys. 2005 3666 3677
,[56] Therapeutic ionizing radiation induced bone loss: a review of in vivo and in vitro findings Connective Tissue Res. 2018 509 522
, , , , , ,Cité par Sources :