A. Camacho 1 ; E. Díaz-Ocampo 2 ; S. Jerez 3
@article{10_1051_mmnp_2022038,
author = {A. Camacho and E. D{\'\i}az-Ocampo and S. Jerez},
title = {Optimal control for a bone metastasis with radiotherapy model using a linear objective functional},
journal = {Mathematical modelling of natural phenomena},
eid = {32},
year = {2022},
volume = {17},
doi = {10.1051/mmnp/2022038},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022038/}
}
TY - JOUR AU - A. Camacho AU - E. Díaz-Ocampo AU - S. Jerez TI - Optimal control for a bone metastasis with radiotherapy model using a linear objective functional JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022038/ DO - 10.1051/mmnp/2022038 LA - en ID - 10_1051_mmnp_2022038 ER -
%0 Journal Article %A A. Camacho %A E. Díaz-Ocampo %A S. Jerez %T Optimal control for a bone metastasis with radiotherapy model using a linear objective functional %J Mathematical modelling of natural phenomena %D 2022 %V 17 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022038/ %R 10.1051/mmnp/2022038 %G en %F 10_1051_mmnp_2022038
A. Camacho; E. Díaz-Ocampo; S. Jerez. Optimal control for a bone metastasis with radiotherapy model using a linear objective functional. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 32. doi: 10.1051/mmnp/2022038
[1] , , , Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy Discr. Continu. Dyn. Syst. B 2019 2017
[2] J.W. Bachman and T. Hillen , Mathematical optimization of the combination of radiation and differentiation therapies for cancer. Front. Oncol. 3 (2013). https://doi.org/10.3389/fonc.2013.00052
[3] , , , The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence Nat. Rev. Cancer 2015 409 425
[4] , , , , , , Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype Nat. Rev. Cancer 2009 134 142
[5] , The failures and challenges of bone metastases research in radiation oncology J. Bone Oncol. 2013 84 88
[6] F.J. Bonnans , D. Giorgi , V. Grelard , B. Heymann , S. Maindrault , P. Martinon , O. Tissot and J. Liu , Bocop – a collection of examples. INRIA (2017).
[7] B. Bonnard and M. Chyba , Vol. 40 of Singular trajectories and their role in control theory. Springer-Verlag (2003).
[8] The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction Semin. Radiat. Oncol. 2008 234 239
[9] , , , Optimal weekly scheduling in fractionated radiotherapy: effect of an upper bound on the dose fraction size J. Math. Biol. 2015 361 398
[10] , Bone metastasis treatment modeling via optimal control J. Math. Biol. 2019 497 552
[11] , Nonlinear modeling and control strategies for bone diseases based on TGFβ and Wnt factors Commun. Nonlinear Sci. Numer. Simul. 2021 105842
[12] , , , , , , PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival Bone 2014 33 40
[13] , , , , , , , , , , , , Suppression of sclerostin alleviates radiation-induced bone loss by protecting bone-forming cells and their progenitors through distinct mechanisms J. Bone Mineral Res. 2017 360 372
[14] , , , , Bone metastasis: histological changes and pathophysiological mechanisms in osteolytic or osteosclerotic localizations. A review Morphologie 2011 65 75
[15] , , , , Palliative radiotherapy trials for bone metastases: a systematic review J. Clinic. Oncol. 2007 1423 1436
[16] , , , , , , Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls Math. Biosci. 2007 292 315
[17] R. Di Franco , S. Falivene , V. Ravo and P. Muto , Radiotherapy for the Treatment of Bone Metastases, in Interventional Neuroradiology of the Spine, edited by M. Muto . Springer, Milano (2013) pp. 221–230.
[18] , , , , Mathematical modelling of radiotherapy strategies for early breast cancer J. Theor. Biol. 2006 158 171
[19] , , Optimal scheduling of radiotherapy and angiogenic inhibitors Bull. Math. Biol. 2003 407 424
[20] W. Fleming and R. Rishel , Deterministic and Stochastic Optimal Control. Springer-Verlag, New York (1975).
[21] 21 years of biologically effective dose Br. J. Radiol. 2010 554 568
[22] , , A mixed radiotherapy and chemotherapy model for treatment of cancer with metastasis Math. Methods Appl. Sci. 2016 4603 4617
[23] , , , , External beam radiation therapy for orthopaedic pathology J. Am. Acad. Orthopaed. Surg. 2015 243 252
[24] W.S. Hong , S.G. Wang and G.Q. Zhang , Lung cancer radiotherapy: simulation and analysis based on a multicomponent mathematical model. Comput. Math. Methods Med. 2021 (2021) Article 6640051.
[25] , Bone metastasis modeling based on the interactions between the BMU and tumor cells J. Comput. Appl. Math. 2018 866 876
[26] S. Jerez , E. Pliego , F.J. Solís and A.K. Miller , Antigen receptor therapy in bone metastasis via optimal control for different human life stages. J. Math. Biol. 83 (2021) Article 24.
[27] , , , , Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling Bone 2003 206 215
[28] , New therapeutic targets for cancer bone metastasis Trends Pharmacolog. Sci. 2015 360 373
[29] , Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy Math. Biosci. 2007 320 342
[30] , , Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy Math. Biosci. Eng. 2011 307 323
[31] , , Optimal response to chemotherapy for a mathematical model of tumor–immune dynamics J. Math. Biol. 2012 557 577
[32] , , Optimal combined radio- and anti-angiogenic cancer therapy J. Optim. Theory Appl. 2019 321 340
[33] , , , Optimal and receding horizon control of tumor growth in myeloma bone disease Biomed. Signal Process. Control 2016 128 134
[34] S. Lenhart and J.T. Workman , Optimal control applied to biological models. CRC Press (2007).
[35] The role of radiation therapy in controlling painful bone metastases Curr. Pain Headache Rep. 2012 300 306
[36] , , Convergence of the forward-backward sweep method in optimal control Comput. Optim. Appl. 2012 207 226
[37] Metastasis to bone: causes, consequences and therapeutic opportunities Nat. Rev. Cancer 2002 584 593
[38] The role of osteoblasts in bone metastasis J. Bone Oncol. 2016 124 127
[39] The distribution of secondary growths in cancer of the breast The Lancet 1889 571 573
[40] , , , , , Predicting patient-specific radiotherapy protocols based on mathematical model choice for proliferation saturation index Bull. Math. Biol. 2018 1195 1206
[41] L.S. Pontryagin , Mathematical theory of optimal processes. CRC Press (1987).
[42] , , Optimal control for a mathematical model of glioma treatment with oncolytic therapy and TNF-α inhibitor J. Optim. Theory Appl. 2018 456 477
[43] , , On a multiobjective optimal control of a tumor growth model with immune response and drug therapies Int. Trans. Oper. Res. 2018 269 294
[44] , , , A mathematical model for brain tumor response to radiation therapy J. Math. Biol. 2009 561 578
[45] H. Schättler and U. Ledzewicz , Optimal control for mathematical models of cancer therapies. Springer-Verlag, New York (2015).
[46] , , , , , , Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy Cancer Res. 2016 4931 4940
[47] Role of optimal control theory in cancer chemotherapy Math. Biosci. 1990 237 284
[48] A. Swierniak , Control problems arising in combined antiangiogenic therapy and radiotherapy, in Proc. 5 IASTED Conf. on Biomedical Engineering (2007) 113–117.
[49] Team Commands, Inria Saclay (2017). BOCOP: an open source toolbox for optimal control. http://bocop.org
[50] , , , , Incidence and treatment patterns of complicated bone metastases in a population-based radiotherapy program Radiother. Oncol. 2016 552 556
[51] , The unresolved role of systemic factors in bone metastasis J. Bone Oncol. 2016 96 99
[52] , Pain control by ionizing radiation of bone metastasis Int. J. Dev. Biol. 2004 599 606
[53] , On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming Math. Program. 2006 25 57
[54] , , , , Fractionated follow-up chemotherapy delays the onset of resistance in bone metastatic prostate cancer Games 2018 19
[55] , Optimization of radiotherapy dose-time fractionation with consideration of tumor specific biology Med. Phys. 2005 3666 3677
[56] , , , , , , Therapeutic ionizing radiation induced bone loss: a review of in vivo and in vitro findings Connective Tissue Res. 2018 509 522
Cité par Sources :