Voir la notice de l'article provenant de la source EDP Sciences
Shenglan Yuan 1 ; Yang Li 2 ; Zhigang Zeng 3
@article{MMNP_2022_17_a36, author = {Shenglan Yuan and Yang Li and Zhigang Zeng}, title = {Stochastic bifurcations and tipping phenomena of insect outbreak systems driven by \ensuremath{\alpha}-stable {L\'evy} processes}, journal = {Mathematical modelling of natural phenomena}, eid = {34}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022037}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022037/} }
TY - JOUR AU - Shenglan Yuan AU - Yang Li AU - Zhigang Zeng TI - Stochastic bifurcations and tipping phenomena of insect outbreak systems driven by α-stable Lévy processes JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022037/ DO - 10.1051/mmnp/2022037 LA - en ID - MMNP_2022_17_a36 ER -
%0 Journal Article %A Shenglan Yuan %A Yang Li %A Zhigang Zeng %T Stochastic bifurcations and tipping phenomena of insect outbreak systems driven by α-stable Lévy processes %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022037/ %R 10.1051/mmnp/2022037 %G en %F MMNP_2022_17_a36
Shenglan Yuan; Yang Li; Zhigang Zeng. Stochastic bifurcations and tipping phenomena of insect outbreak systems driven by α-stable Lévy processes. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 34. doi : 10.1051/mmnp/2022037. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022037/
[1] L. Arnold , Random dynamical systems. Springer, Berlin (2013).
[2] Tipping points in open systems: Bifurcation, noise-induced and rate-independent examples in the climate system Philos. Trans. R. Soc. A 2012 1166 1184
, , ,[3] Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species PloS one 2018 0200954
, ,[4] The synchronization of chaotic systems Phys. Rep 2002 1 101
, , , ,[5] From patterns to predictions Nature 2013 157 158
,[6] Impact of an AMOC weakening on the stability of the southern Amazon rainforest Eur. Phys. J. Spec. Top 2021 1 9
, , ,[7] A prey-Cpredator model with refuge for prey and additional food for predator in a fluctuating environment Physica A 2020 122844
,[8] J. Duan , An introduction to stochastic dynamics. Cambridge University Press (2015).
[9] Fokker-Planck equations for stochastic dynamical systems with symmetric Levy motions Appl. Math. Comput 2016 1 20
, ,[10] M. Gladwell , The tipping point: How little things can make a big difference. Little Brown (2006).
[11] The insect apocalypse, and why it matters Curr. Biol 2019 967 971
[12] Non-equilibrium transitions in multiscale systems with a bifurcating slow manifold J. Stat. Mech 2017 093208
,[13] R.C. Hilborn , Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand (2000).
[14] H. Kielhofer , Bifurcation theory: an introduction with applications to partial differential equations. Springer Science Business Media (2011).
[15] Tipping elements in the Earth’s climate system Proc. Nati. Acad. Sci 2008 1786 1793
, ,[16] Most probable dynamics of stochastic dynamical systems with exponentially light jump fluctuations Chaos 2020 063142
, , ,[17] Qualitative analysis of insect outbreak systems: the spruce budworm and forest J. Anim. Ecol 1978 315 332
, ,[18] A.C.J. Luo and H. Merdan (Eds.), Mathematical Modeling and Applications in Nonlinear Dynamics. Springer International Publishing (2016).
[19] S. Lynch , Dynamical systems with applications using MATLAB. Birkhäuser, Boston (2004).
[20] A. Markos , T. Dimitris , S. Michalis and P. Charalambos , Stochastic processes and insect outbreak systems: Application to olive fruit fly. WSEAS Press (2007) 98–103.
[21] Effects of temperature and availability of insect prey on bat emergence from hibernation in spring J. Mammal 2016 1623 1633
, ,[22] Direct impacts of recent climate warming on insect populations Integr. Zool 2010 132 142
,[23] G. Samorodnitsky and M.S. Taqqu , Stable non-Gaussian random processes - Stochastic models with infinite variance - Stochastic modeling. Chapman Hall, New York (1994).
[24] K.I. Sato , Levy processes and infinitely divisible distributions. Cambridge University Press (1999).
[25] Ups and downs of insect populations Nat. Ecol. Evol 2019 1616 1617
[26] M. Scheffer , Critical transitions in nature and society. Princeton University Press (2020).
[27] S.H. Strogatz , Nonlinear dynamics and chaos with applications to physics, biology, chemistry, and engineering. CRC Press (2018).
[28] Predicting climate tipping as a noisy bifurcation: a review Int. J. Bifurcation Chaos 2011 399 423
,[29] Determinants and consequences of plant-insect phenological synchrony for a non-native herbivore on a deciduous conifer: implications for invasion success Oecologia 2019 867 878
, , ,[30] S. Wiggins , Introduction to applied nonlinear dynamical systems and chaos, 2nd edn., Springer, New York (2003).
[31] Evidence that coronavirus superspreading is fat-tailed Proc. Nati. Acad. Sci 2020 29416 29418
,[32] Stochastic bifurcation for two-time-scale dynamical system with a-stable Levy noise J. Stat. Mech 2021 033204
, ,[33] S. Yuan , Code, Github, https://github.com/ShenglanYuan/Stochastic-bifurcation-and-tipping-phenomena-of-insect-outbreak-dynamical-systems-driven-by-stable (2021).
[34] Transitions in a genetic transcriptional regulatory system under Levy motion Sci. Rep 2016 1 12
, , ,Cité par Sources :