Voir la notice de l'article provenant de la source EDP Sciences
Nadezhda Malysheva 1, 2, 3 ; Junyu Wang 3 ; Max von Kleist 2, 3
@article{MMNP_2022_17_a16, author = {Nadezhda Malysheva and Junyu Wang and Max von Kleist}, title = {S̲tochastic {S̲imulation} {A̲lgorithm} {For} {Effective} {Spreading} {Dynamics} {On} {T̲ime-Evolving} {A̲daptive} {N̲etworX̲} {(SSATAN-X)}}, journal = {Mathematical modelling of natural phenomena}, eid = {35}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022035}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022035/} }
TY - JOUR AU - Nadezhda Malysheva AU - Junyu Wang AU - Max von Kleist TI - S̲tochastic S̲imulation A̲lgorithm For Effective Spreading Dynamics On T̲ime-Evolving A̲daptive N̲etworX̲ (SSATAN-X) JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022035/ DO - 10.1051/mmnp/2022035 LA - en ID - MMNP_2022_17_a16 ER -
%0 Journal Article %A Nadezhda Malysheva %A Junyu Wang %A Max von Kleist %T S̲tochastic S̲imulation A̲lgorithm For Effective Spreading Dynamics On T̲ime-Evolving A̲daptive N̲etworX̲ (SSATAN-X) %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022035/ %R 10.1051/mmnp/2022035 %G en %F MMNP_2022_17_a16
Nadezhda Malysheva; Junyu Wang; Max von Kleist. S̲tochastic S̲imulation A̲lgorithm For Effective Spreading Dynamics On T̲ime-Evolving A̲daptive N̲etworX̲ (SSATAN-X). Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 35. doi : 10.1051/mmnp/2022035. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022035/
[1] A modified next reaction method for simulating chemical systems with time dependent propensities and delays J. Chew,. Phys 2007 214107
[2] Incorporating postleap checks in tau-leaping J. Chew,. Phys 2008 054103
[3] Error analysis of tau-leap simulation methods Ann. Appl. Probab 2011 2226 2262
, ,[4] When individual behaviour matters: homogeneous and network models in epidemiology J.R. Soc. Interface 2007 879 91
, ,[5] Simulating non-Markovian stochastic processes Phys. Rev. E 2014 042108
, , ,[6] Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies Lancet Infect Dis 2009 118 29
, , , , , ,[7] Mathematical epidemiology: past, present, and future Infect Dis. Model 2017 113 127
[8] J. Butcher , Numerical Methods for Ordinary Differential Equations, Second Edition, Wiley (2008).
[9] Efficient step size selection for the tau-leaping simulation method J. Chem. Phys 2006 044109
, ,[10] Prevention of HIV-1 infection with early antiretroviral therapy N. Engl. J. Med 2011 493 505
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,[11] Integrating stochasticity and network structure into an epidemic model J. R. Soc. Interface 2009 761 74
, ,[12] Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave Nature 2021 127 132
, , , , , , , , , , , , , , , , ,[13] R. Dunbar , Grooming, gossip, and the evolution of language. Harvard University Press (1998).
[14] Neocortex size as a constraint on group size in primates J. Human Evolut 1992 469 493
[15] Hybrid stochastic framework predicts efficacy of prophylaxis against HIV PLoS Comput. Biol 2018 e1006155
, , ,[16] The Utility of Efavirenz-based prophylaxis against hiv infection. A systems pharmacological analysis Front. Pharmacol 2019 199
, , , ,[17] Multiscale systems-pharmacology pipeline to assess the prophylactic efficacy of NRTIs Against HIV-1 CPT Pharmacometr. Syst. Pharmacol 2016 377 87
, ,[18] Optimal treatment strategies in the context of 'treatment for prevention' against HIV-1 PLoS Comput. Biol 2015 e1004200
, , ,[19] Epidemics on dynamic networks Epidemics 2018 88 97
,[20] E. Fehlberg , Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize control. NASA Technical Report (TR) (1968).
[21] Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results Phys. Rev. E 2012 041125
, ,[22] Modelling the influence of human behaviour on the spread of infectious diseases: a review J.R. Soc. Interface 2010 1247 1256
, ,[23] Exact stochastic simulation of coupled chemical-reactions J. Phys. Chem 1977 2340 2361
[24] Approximate accelerated stochastic simulation of chemically reacting systems J. Chem. Phys 2001 1716 1733
[25] Concurrent partnerships, acute infection and HIV epidemic dynamics among young adults in Zimbabwe AIDS Behav 2012 312 322
, , , , ,[26] Preexposure chemoprophylaxis for HIV prevention in men who have sex with men N. Engl. J. Med 2010 2587 2599
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,[27] Adaptive coevolutionary networks: a review J.R. Soc. Interface 2008 259 271
,[28] T. Gross and H. Sayama , Adaptive Networks: Theory, Models and Applications. Springer (2009).
[29] On realizability of a set of integers as degrees of the vertices of a linear graph. I J. Soc. Indust. Appl. Math 1962 496 506
[30] OpenABM-Covid19-An agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing PLoS Comput. Biol 2021 e1009146
, , , , , , , , , , , , , , , , , , , , , , , , ,[31] EpiFire: An open source CH-+ library and application for contact network epidemiology BMC Bioinform 2012 76
, , , ,[32] Epidemiologically optimal static networks from temporal network data PLoS Comput. Biol 2013 e1003142
[33] P. Holme and J. Saramüaki , Temporal Networks. Springer (2013).
[34] Contact tracing and epidemics control in social networks Phys. Rev. E 2002 056115
,[35] EpiModel: an R package for mathematical modeling of infectious disease over networks J. Stat. Software 2018
, ,[36] Networks and epidemic models J.R. Soc. Interface 2005 295 307
,[37] Systematic approximations to susceptible-infectious-susceptible dynamics on networks PLoS Comput. Biol 2016 e1005296
, , ,[38] A contribution to the mathematical theory of epidemics Proc. Roy. Soc. A 1927 700 721
,[39] Covasim: an agent-based model of COVID-19 dynamics and interventions PLOS Comput. Biol 2021 1 32
, , , , , , , , , , , , , , , , , , , , , , , , ,[40] Measures of concurrency in networks and the spread of infectious disease Math. Biosci 1996 165 195
,[41] Concurrency of partnerships, consistency with data, and control of sexually transmitted infections Epidemics 2018 35 46
,[42] Respiratory virus shedding in exhaled breath and efficacy of face masks Nat. Med 2020 676 680
, , , , , , , , , , , , ,[43] 'Dunbar's number' deconstructed Biol. Lett 2021 20210158
, ,[44] Containing pandemic influenza with antiviral agents Am,. J. Epidemiol 2004 623 633
, , ,[45] L. Marchetti , C. Priami and V.H. Thanh , Simulation Algorithms for Computational Systems Biology. Springer (2017).
[46] Influence maximization in complex networks through optimal percolation Nature 2015 65 68
,[47] A multi-agent model to study epidemic spreading and vaccination strategies in an urban-like environment Appl. Netw. Sci 2020 68
, , ,[48] Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January-September 2020: analysis of national surveillance data Lancet Reg. Health Eur 2021 100112
, , , , , , , , , ,[49] Optimal percolation on multiplex networks Nat. Commun 2017 1540
, ,[50] Epidemic processes in complex networks Rev. Mod. Phys 2015 925 979
, , ,[51] Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine N. Engl. J. Med 2020 2603 2615
, , , , , , , , , , , , , , , , , , , , , , , , , , , ,[52] Sexual transmission of HIV N. Engl. J. Med 1997 1072 1078
, , ,[53] Simulation methods with extended stability for stiff biochemical Kinetics BMC Syst. Biol 2010 110
, ,[54] Situating agent-based modelling in population health research Emerg. Themes Epidemiol 2021 10
, , , , , ,[55] An intra-host SARS-CoV-2 dynamics model to assess testing and quarantine strategies for incoming travelers, contact management, and de-isolation Patterns (N Y) 2021 100262
, , , , , ,[56] COVIDStrategyCal-culator: a software to assess testing and quarantine strategies for incoming travelers, contact management, and de-isolation Patterns (N Y) 2021 100264
, ,[57] Temporal gillespie algorithm: fast simulation of contagion processes on time-varying networks PLoS Comput. Biol 2015 e1004579
,[58] Stochastic simulation of biomolecular networks in dynamic environments PLoS Comput. Biol 2016 e1004923
, , ,[59] Condom effectiveness in reducing heterosexual HIV transmission Cochrane Database Syst. Rev 2002 CD003255
,[60] Numerical approaches for the rapid analysis of prophylactic efficacy against HIV with arbitrary drug-dosing schemes PLoS Comput. Biol 2021 1009295
, ,[61] Largenet2: an object-oriented programming library for simulating large adaptive networks Bioinformatics 2013 277 278
,Cité par Sources :