Voir la notice de l'article provenant de la source EDP Sciences
Manuel Miranda 1 ; Ernesto Estrada 1
@article{MMNP_2022_17_a34, author = {Manuel Miranda and Ernesto Estrada}, title = {Degree-biased advection{\textendash}diffusion on undirected graphs/networks}, journal = {Mathematical modelling of natural phenomena}, eid = {30}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022034}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022034/} }
TY - JOUR AU - Manuel Miranda AU - Ernesto Estrada TI - Degree-biased advection–diffusion on undirected graphs/networks JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022034/ DO - 10.1051/mmnp/2022034 LA - en ID - MMNP_2022_17_a34 ER -
%0 Journal Article %A Manuel Miranda %A Ernesto Estrada %T Degree-biased advection–diffusion on undirected graphs/networks %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022034/ %R 10.1051/mmnp/2022034 %G en %F MMNP_2022_17_a34
Manuel Miranda; Ernesto Estrada. Degree-biased advection–diffusion on undirected graphs/networks. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 30. doi : 10.1051/mmnp/2022034. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022034/
[1] Size and form in efficient transportation networks Nature 1999 130 132
, ,[2] Advection and diffusion of substances in biological tissues with complex vascular networks Ann. Biomed. Eng. 2000 253 268
,[3] The value of small size: loss of forest patches and ecological thresholds in southern Madagascar Ecol. Appl. 2006 440 451
, , , ,[4] Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs Mycolog. Res. 1992 135 141
[5] Movement toward better environments and the evolution of rapid diffusion Math. Biosci. 2006 199 214
, ,[6] Advection-mediated coexistence of competing species Proc. Roy. Soc. Edinb. Sect. A 2007 497 518
, ,[7] A. Chapman, Semi-Autonomous Networks: Effective Control of Networked Systems through Protocols, Design, and Modeling. Springer Theses. 2015, pp. 6–13.
[8] A. Chapman and M. Mesbahi, Advection on graphs. In 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, (2011), pp. 1461–1466.
[9] A. Chapman, E. Schoof and M. Mesbahi, Advection on networks with an application to decentralized load balancing. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012).
[10] Reaction-diffusion-advection models for the effects and evolution of dispersal Discr. Continu. Dyn. Syst. 2014 1701
[11] On the evolution of random graphs Publ. Math. Inst. Hung. Acad. Sci 1960 17 60
,[12] E. Estrada, The structure of complex networks: theory and applications. Oxford University Press (2012).
[13] Combinatorial study of degree assortativity in networks Phys. Rev. E 2011 047101
[14] ‘Hubs-repelling’ Laplacian and related diffusion on graphs/networks Linear Algebr. Appl. 2020 256 280
[15] Hubs-biased resistance distances on graphs and networks J. Math. Anal. Appl. 2022 125728
,[16] Perceptual ranges, information gathering, and foraging success in dynamic landscapes Am. Natural. 2017 474 489
[17] Improved foraging by switching between diffusion and advection: benefits from movement that depends on spatial context Theor. Ecol. 2020 127 136
[18] Hubs-attracting Laplacian and related synchronization on networks SIAM J. Appl. Dyn. Syst. 2020 1057 1079
, ,[19] Lemurs and the regeneration of dry deciduous forest in Madagascar Conserv. Biol. 1999 794 804
, , , ,[20] An advection-diffusion concept for solute transport in heterogeneous unconsolidated geological deposits Water Resour. Res. 1984 369 378
[21] Theoretical models of microvascular oxygen transport to tissue Microcirculation 2008 795 811
[22] A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport J. Theor. Biol. 2000 181 194
,[23] Using spatially explicit models to characterize foraging performance in heterogeneous landscapes Am. Natural. 1998 97 113
[24] Advection–diffusion equations for generalized tactic searching behaviors J. Math. Biol. 1999 169 194
[25] A practical model of metapopulation dynamics J. Animal Ecol. 1994 151 162
[26] Advection, diffusion, and delivery over a network Phys. Rev. E 2012 021905
[27] Discrete advection–diffusion equations on graphs: maximum principle and finite volumes Appl. Math. Comput. 2019 630 644
,[28] Translocation of solutes in fungi Biolog. Rev. 1987 215 243
[29] A mathematical model of tumor oxygen and glucose mass transport and metabolism with complex reaction kinetics Radiat. Res. 2003 336 344
, ,[30] Water transport in plants obeys Murray’s law Nature 2003 939 942
, ,[31] Laplacian matrices of graphs: a survey Linear Algebr. Appl. 1994 143 176
[32] Assortative mixing in networks Phys. Rev. Lett. 2002 208701
[33] Rak, Advection on graphs.(Doctoral dissertation) 2017. http://nrs.harvard.edu/urn-3:HUL.InstRepos:38779537
[34] Leaf hydraulics Annu. Rev. Plant Biol. 2006 361 381
,[35] S. Sadhukhan and S.K. Basu, Anomalous advection–diffusion models for Avascular tumour growth. Preprint arXiv:1905.05706 (2019).
[36] Multiscale modelling of fluid and drug transport in vascular tumours Bull. Math. Biol. 2010 1464 1491
,[37] A diffusion-based theory of organism dispersal in heterogeneous populations Am. Natural. 2003 441 458
,[38] Beyond diffusion: modelling local and long-distance dispersal for organisms exhibiting intensive and extensive search modes Theor. Populat. Biol. 2011 70 81
, ,[39] On the volume-flow mechanism of phloem transport Planta 1973 355 366
, ,[40] J. Yellen, Basic digraph models and properties. In Handbook of Graph Theory (Discrete Mathematics and Its Applications), edited by J. L. Gross, J. Yellen, P. Zhang, Chapman and Hall/CRC (2013) 164–179.
[41] Assortativity measures for weighted and directed networks J. Complex Netw. 2021 cnab017
, ,Cité par Sources :