Modelling optimal pest control of non-autonomous predator–prey interaction
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 28.

Voir la notice de l'article provenant de la source EDP Sciences

An ecological system comprehended by a pest and its natural enemy, the predator, is considered. Parameters of system are time dependent in order to accompany their variations associated to climate evolutions. Combining the use of pesticides and of extra supply of food to predators, we propose the eradication of pest through optimal control having those two measures as controls. Is established that the resulting problem has a unique solution. Uniqueness is obtained on the whole interval using a recursive argument. The usefulness of model to tackle the pest population is backed by numerical simulation results.
DOI : 10.1051/mmnp/2022033

Paulo Rebelo 1 ; Silvério Rosa 2 ; César M. Silva 2

1 CMA-UBI and Department of Mathematics, University of Beira Interior, Covilhã 6201-001, Portugal
2 Instituto de Telecomunicações and Department of Mathematics, University of Beira Interior, Covilhã 6201-001, Portugal
@article{MMNP_2022_17_a17,
     author = {Paulo Rebelo and Silv\'erio Rosa and C\'esar M. Silva},
     title = {Modelling optimal pest control of non-autonomous predator{\textendash}prey interaction},
     journal = {Mathematical modelling of natural phenomena},
     eid = {28},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022033/}
}
TY  - JOUR
AU  - Paulo Rebelo
AU  - Silvério Rosa
AU  - César M. Silva
TI  - Modelling optimal pest control of non-autonomous predator–prey interaction
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022033/
DO  - 10.1051/mmnp/2022033
LA  - en
ID  - MMNP_2022_17_a17
ER  - 
%0 Journal Article
%A Paulo Rebelo
%A Silvério Rosa
%A César M. Silva
%T Modelling optimal pest control of non-autonomous predator–prey interaction
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022033/
%R 10.1051/mmnp/2022033
%G en
%F MMNP_2022_17_a17
Paulo Rebelo; Silvério Rosa; César M. Silva. Modelling optimal pest control of non-autonomous predator–prey interaction. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 28. doi : 10.1051/mmnp/2022033. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022033/

[1] P.A. Abrams, C.J. Walters Invulnerable prey and the paradox of enrichment Ecology 1996 1125 1133

[2] L.D. Berkovitz and N.G. Medhin, Nonlinear optimal control theory. CRC Press, Boca Raton, FL (2013).

[3] W.H. Fleming and R.W. Rishel, Vol. 1 of Deterministic and stochastic optimal control. Springer Science Business Media (1975).

[4] H. Gaff, E. Schaefer Optimal control applied to vaccination and treatment strategies for various epidemiological models Mathe. Biosci. Eng. 2009 469 492

[5] P. Georgescu, H. Zhang An impulsively controlled predator—pest model with disease in the pest Nonlinear Anal. 2010 270 287

[6] S. Jana, T.K. Kar A mathematical study of a prey-predator model in relevance to pest control Nonlinear Dyn. 2013 667 683

[7] H.R. Joshi Optimal control of an hiv immunology model Opt. Control Appl. Methods 2002 199 213

[8] T.K. Kar, A. Ghorai, S. Jana Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide J. Theor. Biol. 2012 187 198

[9] J. Mateus, P. Rebelo, S. Rosa, C. Silva, D.F.M. Torres Optimal control of non-autonomous seirs models with vaccination and treatment Discr. Continu. Dyn. Syst. 2018 187 198

[10] U.K. Pahari, T.K. Kar Conservation of a resource based fishery through optimal taxation Nonlinear Dyn. 2013 591 603

[11] L.S. Pontryagin, Mathematical theory of optimal processes. CRC Press (1987).

[12] S. Rosa, P. Rebelo, C.M. Silva, H. Alves, P.G. Carvalho Optimal control of the customer dynamics based on marketing policy Appl. Math. Comput. 2018 42 55

[13] E. Venturino Ecoepidemiology: a more comprehensive view of population interactions Math. Model. Natural Phenom. 2016 49 90

[14] X. Wang, X. Song Mathematical models for the control of a pest population by infected pest Comput. Math. Appl. 2008 266 278

Cité par Sources :