Voir la notice de l'article provenant de la source EDP Sciences
Paulo Rebelo 1 ; Silvério Rosa 2 ; César M. Silva 2
@article{MMNP_2022_17_a17, author = {Paulo Rebelo and Silv\'erio Rosa and C\'esar M. Silva}, title = {Modelling optimal pest control of non-autonomous predator{\textendash}prey interaction}, journal = {Mathematical modelling of natural phenomena}, eid = {28}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022033}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022033/} }
TY - JOUR AU - Paulo Rebelo AU - Silvério Rosa AU - César M. Silva TI - Modelling optimal pest control of non-autonomous predator–prey interaction JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022033/ DO - 10.1051/mmnp/2022033 LA - en ID - MMNP_2022_17_a17 ER -
%0 Journal Article %A Paulo Rebelo %A Silvério Rosa %A César M. Silva %T Modelling optimal pest control of non-autonomous predator–prey interaction %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022033/ %R 10.1051/mmnp/2022033 %G en %F MMNP_2022_17_a17
Paulo Rebelo; Silvério Rosa; César M. Silva. Modelling optimal pest control of non-autonomous predator–prey interaction. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 28. doi : 10.1051/mmnp/2022033. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022033/
[1] Invulnerable prey and the paradox of enrichment Ecology 1996 1125 1133
,[2] L.D. Berkovitz and N.G. Medhin, Nonlinear optimal control theory. CRC Press, Boca Raton, FL (2013).
[3] W.H. Fleming and R.W. Rishel, Vol. 1 of Deterministic and stochastic optimal control. Springer Science Business Media (1975).
[4] Optimal control applied to vaccination and treatment strategies for various epidemiological models Mathe. Biosci. Eng. 2009 469 492
,[5] An impulsively controlled predator—pest model with disease in the pest Nonlinear Anal. 2010 270 287
,[6] A mathematical study of a prey-predator model in relevance to pest control Nonlinear Dyn. 2013 667 683
,[7] Optimal control of an hiv immunology model Opt. Control Appl. Methods 2002 199 213
[8] Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide J. Theor. Biol. 2012 187 198
, ,[9] Optimal control of non-autonomous seirs models with vaccination and treatment Discr. Continu. Dyn. Syst. 2018 187 198
, , , ,[10] Conservation of a resource based fishery through optimal taxation Nonlinear Dyn. 2013 591 603
,[11] L.S. Pontryagin, Mathematical theory of optimal processes. CRC Press (1987).
[12] Optimal control of the customer dynamics based on marketing policy Appl. Math. Comput. 2018 42 55
, , , ,[13] Ecoepidemiology: a more comprehensive view of population interactions Math. Model. Natural Phenom. 2016 49 90
[14] Mathematical models for the control of a pest population by infected pest Comput. Math. Appl. 2008 266 278
,Cité par Sources :