Voir la notice de l'article provenant de la source EDP Sciences
Subrata Dey 1 ; Malay Banerjee 1 ; Saktipada Ghorai 1
@article{MMNP_2022_17_a18, author = {Subrata Dey and Malay Banerjee and Saktipada Ghorai}, title = {Analytical detection of stationary turing pattern in a predator-prey system with generalist predator}, journal = {Mathematical modelling of natural phenomena}, eid = {33}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022032}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022032/} }
TY - JOUR AU - Subrata Dey AU - Malay Banerjee AU - Saktipada Ghorai TI - Analytical detection of stationary turing pattern in a predator-prey system with generalist predator JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022032/ DO - 10.1051/mmnp/2022032 LA - en ID - MMNP_2022_17_a18 ER -
%0 Journal Article %A Subrata Dey %A Malay Banerjee %A Saktipada Ghorai %T Analytical detection of stationary turing pattern in a predator-prey system with generalist predator %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022032/ %R 10.1051/mmnp/2022032 %G en %F MMNP_2022_17_a18
Subrata Dey; Malay Banerjee; Saktipada Ghorai. Analytical detection of stationary turing pattern in a predator-prey system with generalist predator. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 33. doi : 10.1051/mmnp/2022032. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022032/
[1] Detection of turing patterns in a three species food chain model via amplitude equation Commun. Nonlinear Sci. Numer. Simul. 2019 219 236
, ,[2] Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system Theor. Ecol. 2011 37 53
,[3] Spatio-temporal pattern formation in Rosenzweig—Macarthur model: effect of nonlocal interactions Ecol. Complex. 2017 2 10
,[4] Instabilities in spatially extended predator—prey systems: spatio-temporal patterns in the neighborhood of Turing—Hopf bifurcations J. Theor. Biol. 2007 220 229
, ,[5] Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations J. Theor. Biol. 2007 220 229
, ,[6] Turing-Hopf bifurcation in Gauss-type model with cross diffusion and its application Nonlinear Stud. 2018 665 687
,[7] Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth Comput. Math. Appl. 2015 1948 1969
, , , , ,[8] Waves analysis and spatiotemporal pattern formation of an ecosystem model Nonlinear Anal.: Real World Appl. 2011 2511 2528
[9] Pattern formation outside of equilibrium Rev. Modern Phys. 1993 851
,[10] Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior Acta Appl. Math. 2020 125 143
,[11] A singular reaction—diffusion system modelling prey–predator interactions: Invasion and coextinction waves J. Differ. Equ. 2012 502 532
,[12] Pattern formation and oscillatory dynamics in a two-dimensional coupled bulk-surface reaction-diffusion system SIAM J. Appl. Dyn. Syst. 2019 1334 1390
, ,[13] G.F. Gause , The Struggle for Existence. Williams and Wilkins, Baltimore, Maryland (1934).
[14] Local existence for quasilinear parabolic systems under nonlinear boundary conditions Ann. Matemat. Pura Appl. 1987 41 59
,[15] A theory of biological pattern formation Kybernetik 1972 30 39
,[16] Cross-diffusion-driven Turing instability and weakly nonlinear analysis of Turing patterns in a unidirectional consumer-resource system Boundary Value Probl. 2017 1 33
,[17] Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton—zooplankton model with nonmonotonic functional response Int. J. Bifurc. Chaos 2017 1750088
,[18] Experimental studies on predation: dispersion factors and predator-prey oscillations Hilgardia 1958 343 383
[19] H.B. Keller , Numerical solution of bifurcation and nonlinear eigenvalue problems. In “Applications of Bifurcation Theory” (ed. Rabinowitz ), Academic Press, 359–384 (1977)
[20] Regular and irregular patterns in semiarid vegetation Science 1999 1826 1828
[21] A reaction—diffusion wave on the skin of the marine angelfish Pomacanthus Nature 1995 765 768
,[22] V. Lakshmikantham , S. Leela and A.A. Martynyuk , Practical stability of nonlinear systems. World Scientific (1990).
[23] How population dynamics shape the functional response in a one-predator– two-prey system Ecol. Soc. Am. 2007 1571 1581
, ,[24] Hypothesis for origin of planktonic patchiness Nature 1976 659 659
,[25] Turing pattern formation in a predator—prey system with cross diffusion Appl. Math. Model. 2014 5022 5032
, ,[26] X. tang and C. Xu, Stability and instability analysis for a ratio-dependent predator–prey system with diffusion effect Nonlinear Anal.: Real World Appl. 2011 1616 1626
[27] Undamped oscillations derived from the law of mass action J. Am. Chem. Soc. 1920 1595 1599
[28] H. Malchow , Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation. Chapman and Hall/CRC (2007).
[29] Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis. J Math. Anal. Appl. 2019 1883 1909
, ,[30] Vegetation pattern formation due to interactions between water availability and toxicity in plant—soil feedback Bull. Math. Biol. 2014 2866 2883
, , , , , ,[31] Spatiotemporal complexity of plankton and fish dynamics SIAM Rev. 2002 311 370
,[32] A pseudo-arclength continuation method for nonlinear eigenvalue problems SIAM J. Numer. Anal. 1986 1007 1016
[33] J.D. Murray , vol. 3 of Mathematical biology II: spatial models and biomedical applications. Springer, New York (2001).
[34] A skeleton structure of self-replicating dynamics Physica D 1999 73 104
,[35] A non-linear analysis for spatial structure in a reaction-diffusion model Bull. Math. Biol. 1983 917 930
,[36] Analysis of a prey–predator model with non-local interaction in the prey population Bull. Math. Biol. 2018 906 925
, ,[37] C.V. Pao , Nonlinear parabolic and elliptic equations. Springer Science Business Media (2012).
[38] L. Perko , Differential Equations and Dynamical Systems. Springer-Verlag, New York (2000).
[39] A minimal model of pattern formation in a prey-predator system Math. Comput. Modell. 1999 49 63
,[40] Dissipative structure: an explanation and an ecological example J. Theor. Biol. 1972 545 559
,[41] Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models J. R. Soc. Interface 2008 483 505
,[42] Oscillations and chaos behind predator—prey invasion: mathematical artifact or ecological reality? Philos. Trans. Royal Soc. London. Ser. B 1997 21 38
, ,[43] J. Smoller , vol. 258 of Shock waves and reaction-diffusion equations. Springer Science Business Media (2012).
[44] A simple predator–prey model of exploited marine fish populations incorporating alternative prey ICES J. Marine Sci. 1995 615 628
,[45] The chemical basis of morphogenesis Phil. Trans. Royal Soc. 1952 37 72
[46] Spatiotemporal behavior of a prey—predator system with a group defense for prey Ecol. Complex. 2013 37 47
,[47] V. Volterra , Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C. Ferrari (1926).
[48] Differential inequalities and maximum principles: theory, new methods and applications Nonlinear Anal.: Theory, Methods Appl. 1997 4695 4711
[49] Spatiotemporal complexity of a ratio-dependent predator-prey system Phys. Rev. E 2007 051913
, ,[50] Hopf and steady state bifurcation analysis in a ratio-dependent predator–prey model Commun. Nonlinear Sci. Numer. Simulat 2017 52 73
, ,Cité par Sources :