Subrata Dey 1 ; Malay Banerjee 1 ; Saktipada Ghorai 1
@article{10_1051_mmnp_2022032,
author = {Subrata Dey and Malay Banerjee and Saktipada Ghorai},
title = {Analytical detection of stationary turing pattern in a predator-prey system with generalist predator},
journal = {Mathematical modelling of natural phenomena},
eid = {33},
year = {2022},
volume = {17},
doi = {10.1051/mmnp/2022032},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022032/}
}
TY - JOUR AU - Subrata Dey AU - Malay Banerjee AU - Saktipada Ghorai TI - Analytical detection of stationary turing pattern in a predator-prey system with generalist predator JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022032/ DO - 10.1051/mmnp/2022032 LA - en ID - 10_1051_mmnp_2022032 ER -
%0 Journal Article %A Subrata Dey %A Malay Banerjee %A Saktipada Ghorai %T Analytical detection of stationary turing pattern in a predator-prey system with generalist predator %J Mathematical modelling of natural phenomena %D 2022 %V 17 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022032/ %R 10.1051/mmnp/2022032 %G en %F 10_1051_mmnp_2022032
Subrata Dey; Malay Banerjee; Saktipada Ghorai. Analytical detection of stationary turing pattern in a predator-prey system with generalist predator. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 33. doi: 10.1051/mmnp/2022032
[1] , , Detection of turing patterns in a three species food chain model via amplitude equation Commun. Nonlinear Sci. Numer. Simul. 2019 219 236
[2] , Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system Theor. Ecol. 2011 37 53
[3] , Spatio-temporal pattern formation in Rosenzweig—Macarthur model: effect of nonlocal interactions Ecol. Complex. 2017 2 10
[4] , , Instabilities in spatially extended predator—prey systems: spatio-temporal patterns in the neighborhood of Turing—Hopf bifurcations J. Theor. Biol. 2007 220 229
[5] , , Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations J. Theor. Biol. 2007 220 229
[6] , Turing-Hopf bifurcation in Gauss-type model with cross diffusion and its application Nonlinear Stud. 2018 665 687
[7] , , , , , Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth Comput. Math. Appl. 2015 1948 1969
[8] Waves analysis and spatiotemporal pattern formation of an ecosystem model Nonlinear Anal.: Real World Appl. 2011 2511 2528
[9] , Pattern formation outside of equilibrium Rev. Modern Phys. 1993 851
[10] , Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior Acta Appl. Math. 2020 125 143
[11] , A singular reaction—diffusion system modelling prey–predator interactions: Invasion and coextinction waves J. Differ. Equ. 2012 502 532
[12] , , Pattern formation and oscillatory dynamics in a two-dimensional coupled bulk-surface reaction-diffusion system SIAM J. Appl. Dyn. Syst. 2019 1334 1390
[13] G.F. Gause , The Struggle for Existence. Williams and Wilkins, Baltimore, Maryland (1934).
[14] , Local existence for quasilinear parabolic systems under nonlinear boundary conditions Ann. Matemat. Pura Appl. 1987 41 59
[15] , A theory of biological pattern formation Kybernetik 1972 30 39
[16] , Cross-diffusion-driven Turing instability and weakly nonlinear analysis of Turing patterns in a unidirectional consumer-resource system Boundary Value Probl. 2017 1 33
[17] , Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton—zooplankton model with nonmonotonic functional response Int. J. Bifurc. Chaos 2017 1750088
[18] Experimental studies on predation: dispersion factors and predator-prey oscillations Hilgardia 1958 343 383
[19] H.B. Keller , Numerical solution of bifurcation and nonlinear eigenvalue problems. In “Applications of Bifurcation Theory” (ed. Rabinowitz ), Academic Press, 359–384 (1977)
[20] Regular and irregular patterns in semiarid vegetation Science 1999 1826 1828
[21] , A reaction—diffusion wave on the skin of the marine angelfish Pomacanthus Nature 1995 765 768
[22] V. Lakshmikantham , S. Leela and A.A. Martynyuk , Practical stability of nonlinear systems. World Scientific (1990).
[23] , , How population dynamics shape the functional response in a one-predator– two-prey system Ecol. Soc. Am. 2007 1571 1581
[24] , Hypothesis for origin of planktonic patchiness Nature 1976 659 659
[25] , , Turing pattern formation in a predator—prey system with cross diffusion Appl. Math. Model. 2014 5022 5032
[26] X. tang and C. Xu, Stability and instability analysis for a ratio-dependent predator–prey system with diffusion effect Nonlinear Anal.: Real World Appl. 2011 1616 1626
[27] Undamped oscillations derived from the law of mass action J. Am. Chem. Soc. 1920 1595 1599
[28] H. Malchow , Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation. Chapman and Hall/CRC (2007).
[29] , , Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis. J Math. Anal. Appl. 2019 1883 1909
[30] , , , , , , Vegetation pattern formation due to interactions between water availability and toxicity in plant—soil feedback Bull. Math. Biol. 2014 2866 2883
[31] , Spatiotemporal complexity of plankton and fish dynamics SIAM Rev. 2002 311 370
[32] A pseudo-arclength continuation method for nonlinear eigenvalue problems SIAM J. Numer. Anal. 1986 1007 1016
[33] J.D. Murray , vol. 3 of Mathematical biology II: spatial models and biomedical applications. Springer, New York (2001).
[34] , A skeleton structure of self-replicating dynamics Physica D 1999 73 104
[35] , A non-linear analysis for spatial structure in a reaction-diffusion model Bull. Math. Biol. 1983 917 930
[36] , , Analysis of a prey–predator model with non-local interaction in the prey population Bull. Math. Biol. 2018 906 925
[37] C.V. Pao , Nonlinear parabolic and elliptic equations. Springer Science Business Media (2012).
[38] L. Perko , Differential Equations and Dynamical Systems. Springer-Verlag, New York (2000).
[39] , A minimal model of pattern formation in a prey-predator system Math. Comput. Modell. 1999 49 63
[40] , Dissipative structure: an explanation and an ecological example J. Theor. Biol. 1972 545 559
[41] , Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models J. R. Soc. Interface 2008 483 505
[42] , , Oscillations and chaos behind predator—prey invasion: mathematical artifact or ecological reality? Philos. Trans. Royal Soc. London. Ser. B 1997 21 38
[43] J. Smoller , vol. 258 of Shock waves and reaction-diffusion equations. Springer Science Business Media (2012).
[44] , A simple predator–prey model of exploited marine fish populations incorporating alternative prey ICES J. Marine Sci. 1995 615 628
[45] The chemical basis of morphogenesis Phil. Trans. Royal Soc. 1952 37 72
[46] , Spatiotemporal behavior of a prey—predator system with a group defense for prey Ecol. Complex. 2013 37 47
[47] V. Volterra , Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C. Ferrari (1926).
[48] Differential inequalities and maximum principles: theory, new methods and applications Nonlinear Anal.: Theory, Methods Appl. 1997 4695 4711
[49] , , Spatiotemporal complexity of a ratio-dependent predator-prey system Phys. Rev. E 2007 051913
[50] , , Hopf and steady state bifurcation analysis in a ratio-dependent predator–prey model Commun. Nonlinear Sci. Numer. Simulat 2017 52 73
Cité par Sources :