The adiabatic exponent limits of Riemann solutions for the extended macroscopic production model
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 26.

Voir la notice de l'article provenant de la source EDP Sciences

The exact Riemann solutions for the extended macroscopic production model with an adiabatic exponent are constructed in perfectly explicit forms. The asymptotic limit of Riemann solution consisting of 1-shock wave and 2-contact discontinuity tends to a delta shock solution for the pressureless gas dynamics model under the special over-compressive entropy condition as the adiabatic exponent drops to one. In contrast, the asymptotic limit of Riemann solution composed of 1-rarefaction wave and 2-contact discontinuity tends to the vacuum solution surrounded by two contact discontinuities by letting the adiabatic exponent tend to one, in which the state in the interior of the 1-rarefaction wave fan is developed into vacuum. The intrinsic phenomena of concentration and cavitation are identified and investigated carefully during this limiting process, which displays more complicated and completely different behavior compared with previous literature. In addition, some representative numerical calculations are also provided, which are in well agreement with our theoretical results.
DOI : 10.1051/mmnp/2022029

Shan Shan 1 ; Chun Shen 1 ; Zhijian Wei 1

1 School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong Province 264025, P.R. China
@article{MMNP_2022_17_a32,
     author = {Shan Shan and Chun Shen and Zhijian Wei},
     title = {The adiabatic exponent limits of {Riemann} solutions for the extended macroscopic production model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {26},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022029/}
}
TY  - JOUR
AU  - Shan Shan
AU  - Chun Shen
AU  - Zhijian Wei
TI  - The adiabatic exponent limits of Riemann solutions for the extended macroscopic production model
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022029/
DO  - 10.1051/mmnp/2022029
LA  - en
ID  - MMNP_2022_17_a32
ER  - 
%0 Journal Article
%A Shan Shan
%A Chun Shen
%A Zhijian Wei
%T The adiabatic exponent limits of Riemann solutions for the extended macroscopic production model
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022029/
%R 10.1051/mmnp/2022029
%G en
%F MMNP_2022_17_a32
Shan Shan; Chun Shen; Zhijian Wei. The adiabatic exponent limits of Riemann solutions for the extended macroscopic production model. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 26. doi : 10.1051/mmnp/2022029. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022029/

[1] E. Abreu, R. De La Cruz, W. Lambert Riemann problem and delta-shock solutions for a Keyfitz-Kranzer system with a forcing term J. Math. Anal. Appl. 2021 125267

[2] A. Aggarwal, G. Vaidya, G.D.V. Gowda Positivity-preserving numerical scheme for hyperbolic systems with delta-shock solutions and its convergence analysis Z. Angew. Math. Phys. 2021 165

[3] D. Armbruster, M. Wienke Kinetic models and intrinsic timescales: simulation comparison for a 2nd order queueing model Kinetic Related Models 2019 177 193

[4] D. Armbruster, D. Marthaler, C. Ringhofer Kinetic and fluid model hierarchies for supply chains Multiscale Model. Simul. 2013 43 61

[5] D. Armbruster, P. Degond, C. Ringhofer A model for the dynamics of large queuing networks and supply chains SIAM J. Appl. Math. 2006 896 920

[6] F. Betancourt, R. Burger, C. Chalons, S. Diehl, S. Faras A random sampling approach for a family of Temple-class systems of conservation laws Numer. Math. 2018 37 73

[7] F. Bouchut, On zero pressure gas dynamics, in vol. 22 of Advances in Kinetic Theory and Computing, Ser. Adv. Math. Appl. Sci. World Sci. Publishing, River Edge, NJ (1994) 171–190.

[8] G.Q. Chen, H. Liu Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids SIAM J. Math. Anal. 2003 925 938

[9] V.G. Danilov, V.M. Shelkovich Dynamics of propagation and interaction of δ-shock waves in conservation law systems J. Differ. Equ. 2005 333 381

[10] L. Forestier-Coste, S. Gottlich, M. Herty Data-fitted second-order macroscopic production models SIAM J. Appl. Math. 2015 999 1014

[11] L. Guo, T. Li, G. Yin The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term Commun. Pure Appl. Anal. 2017 295 309

[12] L. Guo, T. Li, G. Yin The transition of Riemann solutions of the modified Chaplygin gas equations with friction to the solutions of the Chaplygin gas equations Z. Angew. Math. Mech. 2022 e201800064

[13] S.T. Hilden, H.M. Nilsen, X. Raynaud Study of the well-posedness of models for the inaccessible pore volume in polymer flooding Transport in Porous Media 2016 65 86

[14] F. Huang, Z. Wang Well-posedness for pressureless flow Comm. Math. Phys. 2001 117 146

[15] M. Ibrahim, F. Liu, S. Liu Concentration of mass in the pressureless limit of Euler equations for power law Nonlinear Analysis: RWA 2019 224 235

[16] H. Kalisch, D. Mitrovic Singular solutions of a fully nonlinear 2 x 2 system of conservation laws Proc. Edinburgh Math. Soc. 2012 711 729

[17] H. Kalisch, D. Mitrovic, V. Teyekpiti Existence and uniqueness of singular solutions for a conservation law arising in magnetohydrodynamics Nonlinearity 2018 5463 5483

[18] H. Kalisch D Mitrovic and V. Teyekpiti, Delta shock waves in shallow water flow Phys. Lett. A 2017 1138 1144

[19] D.M. Lu, H.C. Simpson, A. Gilchrist The application of split-coefficient matrix method to transient two phase flows Int. J. Num. Meth. Heat Fluid flow 1996 63 76

[20] M. Mazzotti, A. Tarafder, J. Cornel, F. Gritti, G. Guiochon Experimental evidence of a delta-shock in nonlinear chromatography J. Chromatogr. A 2010 2002 2012

[21] T. Minhajul, R. Sekhar Nonlinear wave interactions in a macroscopic production model Acta Math. Sci. Ser. B 2021 764 780

[22] D. Mitrovic, M. Nedeljkov Delta-shock waves as a limit of shock waves J. Hyperbolic Differ. Equ. 2007 629 653

[23] M. Nedeljkov Shadow waves: entropies and interactions for delta and singular shocks Arch. Rational Mech. Anal. 2010 489 537

[24] A. Qu, H. Yuan, Q. Zhao High Mach number limit of one-dimensional piston problem for non-isentropic compressible Euler equations: polytropic gas J. Math. Phys. 2020 011507

[25] C.O.R. Sarrico, A. Paiva Delta shock waves in the shallow water system J. Dyn. Differ. Equ. 2018 1187 1198

[26] A. Sen, T. Raja Sekhar The limiting behavior of the Riemann solution to the isentropic Euler system for the logarithmic equation of state with a source term Math. Methods Appl. Sci. 2021 7207 7207

[27] A. Sen, T. Raja Sekhar Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws J. Math. Phys. 2019 051510

[28] A. Sen, T. Raja Sekhar Delta shock wave and wave interactions in a thin film of a perfectly soluble anti-surfactant solution Commun. Pure Appl. Anal. 2020 2641 2653

[29] A. Sen, T. Raja Sekhar, D. Zeidan Stability of the Riemann solution for a 2 x 2 strictly hyperbolic system of conservation laws Sadhana 2019 228

[30] C. Shen, M. Sun Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model J. Differ. Equ. 2010 3024 3051

[31] C. Shen, M. Sun Exact Riemann solutions for the drift-flux equations of two-phase flow under gravity J. Differ. Equ. 2022 1 55

[32] W. Sheng, T. Zhang The Riemann problem for the transportation equations in gas dynamics Mem. Amer. Math. Soc. 1999 1 77

[33] W. Sheng, G. Wang, G. Yin Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes Nonlinear Analysis: RWA 2015 115 128

[34] S. Sheng, Z. Shao The vanishing adiabatic exponent limits of Riemann solutions to the isentropic Euler equations for power law with a Coulomb-like friction term J. Math. Phys. 2019 101504

[35] S. Sheng, Z. Shao The limits of Riemann solutions to Euler equations of compressible fluid flow with a source term J. Engineering Math. 2020 1 22

[36] S. Sheng, Z. Shao Concentration of mass in the pressureless limit of the Euler equations of one-dimensional compressible fluid flow Nonlinear Analysis: RWA 2020 103039

[37] S. Sil, T. Raja Sekhar Nonlocally related systems, nonlocal symmetry reductions and exact solutions for one-dimensional macroscopic production model Eur. Phys. J. Plus 2020 514

[38] S. Sil, T. Raja Sekhar Nonclassical symmetry analysis, conservation laws of one-dimensional macroscopic production model and evolution of nonlinear waves J. Math. Anal. Appl. 2021 124847

[39] M. Sun Singular solutions to the Riemann problem for a macroscopic production model Z. Angew. Math. Mech. 2017 916 931

[40] M. Sun The limits of Riemann solutions to the simplified pressureless Euler system with flux approximation Math. Methods Appl. Sci. 2018 4528 4548

[41] M. Sun Concentration and cavitation phenomena of Riemann solutions for the isentropic Euler system with the logarithmic equation of state Nonlinear Analysis: RWA 2020 103068

[42] B. Temple Systems of conservation laws with invariant submanifolds Trans. Am. Math. Soc. 1983 781 795

[43] P. Wang, C. Shen The perturbed Riemann problem for a macroscopic production model with Chaplygin gas Bull. Malays. Math. Sci. Soc. 2021 1195 1214

[44] H. Yang, J. Liu Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation Science China Math. 2015 2329 2346

[45] H. Yang, Y. Zhang Pressure and flux-approximation to the isentropic relativistic Euler equations for the modified Chaplygin gas J. Math. Phys. 2019 071502

[46] Q. Zhang Concentration in the flux approximation limit of Riemann solutions to the extended Chaplygin gas equations with friction J. Math. Phys. 2019 101508

[47] Y. Zhang, M. Sun The intrinsic phenomena of concentration and cavitation on the Riemann solutions for the perturbed macroscopic production model Math. Meth. Appl. Sci. 2022 864 881

[48] Y. Zhang, Y. Zhang, J. Wang Concentration in the zero-exponent limit of solutions to the isentropic Euler equations for extended Chaplygin gas Asymptotic Anal. 2021 35 67

[49] Y. Zhang, Y. Zhang, J. Wang Zero-exponent limit to the extended Chaplygin gas equations with friction Bull. Malays. Math. Sci. Soc. 2021 3571 3599

Cité par Sources :