A SIQRB delayed model for cholera and optimal control treatment
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 25.

Voir la notice de l'article provenant de la source EDP Sciences

We improve a recent mathematical model for cholera by adding a time delay that represents the time between the instant at which an individual becomes infected and the instant at which he begins to have symptoms of cholera disease. We prove that the delayed cholera model is biologically meaningful and analyze the local asymptotic stability of the equilibrium points for positive time delays. An optimal control problem is proposed and analyzed, where the goal is to obtain optimal treatment strategies, through quarantine, that minimize the number of infective individuals and the bacterial concentration, as well as treatment costs. Necessary optimality conditions are applied to the delayed optimal control problem, with a L1 type cost functional. We show that the delayed cholera model fits better the cholera outbreak that occurred in the Department of Artibonite - Haiti, from 1 November 2010 to 1 May 2011, than the non-delayed model. Considering the data of the cholera outbreak in Haiti, we solve numerically the delayed optimal control problem and propose solutions for the outbreak control and eradication.
DOI : 10.1051/mmnp/2022027

Ana P. Lemos-Paião 1 ; Helmut Maurer 2 ; Cristiana J. Silva 1 ; Delfim F. M. Torres 1

1 Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
2 Institute of Computational and Applied Mathematics, University of Münster, D-48149 Münster, Germany
@article{MMNP_2022_17_a14,
     author = {Ana P. Lemos-Pai\~ao and Helmut Maurer and Cristiana J. Silva and Delfim F. M. Torres},
     title = {A {SIQRB} delayed model for cholera and optimal control treatment},
     journal = {Mathematical modelling of natural phenomena},
     eid = {25},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022027/}
}
TY  - JOUR
AU  - Ana P. Lemos-Paião
AU  - Helmut Maurer
AU  - Cristiana J. Silva
AU  - Delfim F. M. Torres
TI  - A SIQRB delayed model for cholera and optimal control treatment
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022027/
DO  - 10.1051/mmnp/2022027
LA  - en
ID  - MMNP_2022_17_a14
ER  - 
%0 Journal Article
%A Ana P. Lemos-Paião
%A Helmut Maurer
%A Cristiana J. Silva
%A Delfim F. M. Torres
%T A SIQRB delayed model for cholera and optimal control treatment
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022027/
%R 10.1051/mmnp/2022027
%G en
%F MMNP_2022_17_a14
Ana P. Lemos-Paião; Helmut Maurer; Cristiana J. Silva; Delfim F. M. Torres. A SIQRB delayed model for cholera and optimal control treatment. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 25. doi : 10.1051/mmnp/2022027. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022027/

[1] Asian Scientist, Math in a time of cholera (2017). https://www.asianscientist.com/2017/08/health/mathematical-model-yemen-cholera-outbreak

[2] M.O. Beryl, L.O. George, N.O. Fredrick Mathematical analysis of a cholera transmission model incorporating media coverage Int. J. Pure Appl. Math 2016 219 231

[3] F.G. Boese Stability with respect to the delay: on a paper of K. L. Cooke and P. van den Driessche. Comment on: "On zeroes of some transcendental equations" [Funkcial. Ekvac. 29 (1986), no. 1, 77-90 J. Math. Anal. Appl 1998 293 321

[4] J. Calatayud, J. Carlos Cortes, M. Jornet Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model Chaos Solit. Fractals 2020 109639

[5] V. Capasso, S.L. Paveri-Fontana A mathematical model for the 1973 cholera epidemic in the European Mediterranean region Rev. Epidemiol. Santé Publique 1979 121 132

[6] F. Capone, V. De Cataldis, R. De Luca Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic J. Math. Biol 2015 1107 1131

[7] Centers for Disease Control and Prevention, Cholera — vibrio cholerae infection (2018). Available from https://www.cdc.gov/cholera/general/index.html

[8] C.T. Codeco Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir BMC Infect. Dis 2001 14

[9] K.L. Cooke, P. Van Den Driessche On zeroes of some transcendental equations Funkcial. Ekvac 1986 77 90

[10] J. Cui, Z. Wu, X. Zhou Mathematical analysis of a cholera model with vaccination J. Appl. Math 2014 16

[11] S. Edward, N. Nyerere A mathematical model for the dynamics of cholera with control measures Appl. Comput. Math 2015 53 63

[12] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming. Scientific Press series, Thomson, Brooks, Cole (2003).

[13] D.M. Gay, The AMPL modeling language: an aid to formulating and solving optimization problems, in: Numerical analysis and optimization, Vol. 134 of Springer Proc. Math. Stat., Springer, Cham (2015), pp. 95–116.

[14] L. Gollmann, D. Kern, H. Maurer Optimal control problems with delays in state and control variables subject to mixed control-state constraints Opt. Control Appl. Methods 2009 341 365

[15] L. Göllmann, H. Maurer Theory and applications of optimal control problems with multiple time-delays J. Ind. Manag. Optim 2014 413 441

[16] T. Guinn Reduction of delayed optimal control problems to nondelayed problems J. Optim. Theory Appl 1976 371 377

[17] D.M. Hartley, J.G. Morris, D.L. Smith Hyperinfectivity: a critical element in the ability of V. cholera to cause epidemics? PLOS Med 2006 63 69

[18] D. He, X. Wang, D. Gao, J. Wang Modeling the 2016-2017 Yemen cholera outbreak with the impact of limited medical resources J. Theoret. Biol 2018 80 85

[19] S.D. Hove-Musekwa, F. Nyabadza, C. Chiyaka, P. Das, A. Tripathi, Z. Mukandavire Modelling and analysis of the effects of malnutrition in the spread of cholera Math. Comput. Model 2011 1583 1595

[20] Index Mundi, Demographics: Birth rate Haiti (2015). https://www.indexmundi.com/g/g.aspx?c=ha=25

[21] Index Mundi, Demographics: Death rate Haiti (2015). https://www.indexmundi.com/g/g.aspx?c=ha=26

[22] R.I. Joh, H. Wang, H. Weiss, J.S. Weitz Dynamics of indirectly transmitted infectious diseases with immunological threshold Bull. Math. Biol 2009 845 862

[23] A.K.T. Kirschner, J. Schlesinger, A.H. Farnleitner, R. Hornek, B. Söß, B. Golda, A. Herzig, B. Reitner Rapid growth of planktonic vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: Dependence on temperature and dissolved organic carbon quality Appl. Environ. Microbiol 2008 2004 2015

[24] Y. Kuang Delay differential equations with applications in population dynamics Mathematics in Science and Engineering 1993

[25] U. Ledzewicz, H. Schattler Controlling a model for bone marrow dynamics in cancer chemotherapy Math. Biosci. Eng 2004 95 110

[26] U. Ledzewicz and H. Schöattler, On optimal singular controls for a general SIR-model with vaccination and treatment. Discrete Contin. Dyn. Syst. (2011) 981–990.

[27] A.P. Lemos-Paiao, C.J. Silva, D.F.M. Torres An epidemic model for cholera with optimal control treatment J. Comput. Appl. Math 2017 168 180

[28] A.P. Lemos-Paiao, C.J. Silva, D.F.M. Torres A cholera mathematical model with vaccination and the biggest outbreak of world's history AIMS Math 2018 448 463

[29] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi Dynamical behavior of a stochastic epidemic model for cholera J. Franklin Inst 2019 7486 7514

[30] H. Maurer, S. Pickenhain Second-order sufficient conditions for control problems with mixed control-state constraints J. Optim. Theory Appl 1995 649 667

[31] R.L. Miller Neilan, E. Schaefer, H. Gaff, K.R. Fister, S. Lenhart Modeling optimal intervention strategies for cholera Bull. Math. Biol 2010 2004 2018

[32] Z. Mukandavire, F.K. Mutasa, S.D. Hove-Musekwa, S. Dube and J.M. Tchuenche, Mathematical analysis of a cholera model with carriers and assessing the effects of treatment. Nova Science Publishers, Inc. (2008), pp. 1–37.

[33] Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, J.G. Morris Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe Proc. Natl. Acad. Sci 2011 8767 8772

[34] A. Mwasa, J.M. Tchuenche Mathematical analysis of a cholera model with public health interventions Biosystems 2011 190 200

[35] H. Nishiura, S. Tsuzuki, Y. Asai Forecasting the size and peak of cholera epidemic in Yemen, 2017 Future Microbiol 2018 399 402

[36] H. Nishiura, S. Tsuzuki, B. Yuan, T. Yamaguchi, Y. Asai Transmission dynamics of cholera in Yemen, 2017: a real time forecasting Theor. Biol. Med. Model 2017 8

[37] M. Pascual, L.F. Chaves, B. Cash, X. Rodo, M. Yunus Predicting endemic cholera: the role of climate variability and disease dynamics Clim. Res 2008 131 140

[38] J. Reidl, K.E. Klose Vibrio cholerae and cholera: out of the water and into the host FEMS Microbiol. Rev 2002 125 139

[39] R.P. Sanches, C.P. Ferreira, R.A. Kraenkel The role of immunity and seasonality in cholera epidemics Bull. Math. Biol 2011 2916 2931

[40] H. Schattler, U. Ledzewicz, H. Maurer Sufficient conditions for strong local optimality in optimal control problems with L2-type objectives and control constraints Discrete Contin. Dyn. Syst. Ser. B 2014 2657 2679

[41] Z. Shuai, J.H. Tien, P. Van Den Driessche Cholera models with hyperinfectivity and temporary immunity Bull. Math. Biol 2012 2423 2445

[42] G.-Q. Sun, J.-H. Xie, S.-H. Huang, Z. Jin, M.-T. Li, L. Liu Transmission dynamics of cholera: mathematical modeling and control strategies Commun. Nonlinear Sci. Numer. Simul 2017 235 244

[43] A. Wachter, L.T. Biegler On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming Math. Program 2006 25 57

[44] J. Wang, C. Modnak Modeling cholera dynamics with controls Can. Appl. Math. Q 2011 255 273

[45] J. Wang, S. Liao A generalized cholera model and epidemic-endemic analysis J. Biol. Dyn 2012 568 589

[46] World Health Organization, Yemen: Weekly epidemiological bulletin W26 2018 (2018). Available at http://www.emro.who.int/images/stories/yemen/week_26.pdf?ua=1

[47] World Health Organization, Global Task Force on Cholera Control, Cholera country profile: Haiti (2011). http:://www.who.int/cholera/countries/HaitiCountryProfileMay2011.pdf

[48] X. Yang, L. Chen, J. Chen Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models Comput. Math. Appl 1996 109 116

[49] B. Zhou, D. Jiang, Y. Dai, T. Hayat Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity Nonlinear Dyn 2021 931 955

Cité par Sources :