Voir la notice de l'article provenant de la source EDP Sciences
Ana P. Lemos-Paião 1 ; Helmut Maurer 2 ; Cristiana J. Silva 1 ; Delfim F. M. Torres 1
@article{MMNP_2022_17_a14, author = {Ana P. Lemos-Pai\~ao and Helmut Maurer and Cristiana J. Silva and Delfim F. M. Torres}, title = {A {SIQRB} delayed model for cholera and optimal control treatment}, journal = {Mathematical modelling of natural phenomena}, eid = {25}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022027}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022027/} }
TY - JOUR AU - Ana P. Lemos-Paião AU - Helmut Maurer AU - Cristiana J. Silva AU - Delfim F. M. Torres TI - A SIQRB delayed model for cholera and optimal control treatment JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022027/ DO - 10.1051/mmnp/2022027 LA - en ID - MMNP_2022_17_a14 ER -
%0 Journal Article %A Ana P. Lemos-Paião %A Helmut Maurer %A Cristiana J. Silva %A Delfim F. M. Torres %T A SIQRB delayed model for cholera and optimal control treatment %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022027/ %R 10.1051/mmnp/2022027 %G en %F MMNP_2022_17_a14
Ana P. Lemos-Paião; Helmut Maurer; Cristiana J. Silva; Delfim F. M. Torres. A SIQRB delayed model for cholera and optimal control treatment. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 25. doi : 10.1051/mmnp/2022027. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022027/
[1] Asian Scientist, Math in a time of cholera (2017). https://www.asianscientist.com/2017/08/health/mathematical-model-yemen-cholera-outbreak
[2] Mathematical analysis of a cholera transmission model incorporating media coverage Int. J. Pure Appl. Math 2016 219 231
, ,[3] Stability with respect to the delay: on a paper of K. L. Cooke and P. van den Driessche. Comment on: "On zeroes of some transcendental equations" [Funkcial. Ekvac. 29 (1986), no. 1, 77-90 J. Math. Anal. Appl 1998 293 321
[4] Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model Chaos Solit. Fractals 2020 109639
, ,[5] A mathematical model for the 1973 cholera epidemic in the European Mediterranean region Rev. Epidemiol. Santé Publique 1979 121 132
,[6] Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic J. Math. Biol 2015 1107 1131
, ,[7] Centers for Disease Control and Prevention, Cholera — vibrio cholerae infection (2018). Available from https://www.cdc.gov/cholera/general/index.html
[8] Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir BMC Infect. Dis 2001 14
[9] On zeroes of some transcendental equations Funkcial. Ekvac 1986 77 90
,[10] Mathematical analysis of a cholera model with vaccination J. Appl. Math 2014 16
, ,[11] A mathematical model for the dynamics of cholera with control measures Appl. Comput. Math 2015 53 63
,[12] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming. Scientific Press series, Thomson, Brooks, Cole (2003).
[13] D.M. Gay, The AMPL modeling language: an aid to formulating and solving optimization problems, in: Numerical analysis and optimization, Vol. 134 of Springer Proc. Math. Stat., Springer, Cham (2015), pp. 95–116.
[14] Optimal control problems with delays in state and control variables subject to mixed control-state constraints Opt. Control Appl. Methods 2009 341 365
, ,[15] Theory and applications of optimal control problems with multiple time-delays J. Ind. Manag. Optim 2014 413 441
,[16] Reduction of delayed optimal control problems to nondelayed problems J. Optim. Theory Appl 1976 371 377
[17] Hyperinfectivity: a critical element in the ability of V. cholera to cause epidemics? PLOS Med 2006 63 69
, ,[18] Modeling the 2016-2017 Yemen cholera outbreak with the impact of limited medical resources J. Theoret. Biol 2018 80 85
, , ,[19] Modelling and analysis of the effects of malnutrition in the spread of cholera Math. Comput. Model 2011 1583 1595
, , , , ,[20] Index Mundi, Demographics: Birth rate Haiti (2015). https://www.indexmundi.com/g/g.aspx?c=ha=25
[21] Index Mundi, Demographics: Death rate Haiti (2015). https://www.indexmundi.com/g/g.aspx?c=ha=26
[22] Dynamics of indirectly transmitted infectious diseases with immunological threshold Bull. Math. Biol 2009 845 862
, , ,[23] Rapid growth of planktonic vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: Dependence on temperature and dissolved organic carbon quality Appl. Environ. Microbiol 2008 2004 2015
, , , , , , ,[24] Delay differential equations with applications in population dynamics Mathematics in Science and Engineering 1993
[25] Controlling a model for bone marrow dynamics in cancer chemotherapy Math. Biosci. Eng 2004 95 110
,[26] U. Ledzewicz and H. Schöattler, On optimal singular controls for a general SIR-model with vaccination and treatment. Discrete Contin. Dyn. Syst. (2011) 981–990.
[27] An epidemic model for cholera with optimal control treatment J. Comput. Appl. Math 2017 168 180
, ,[28] A cholera mathematical model with vaccination and the biggest outbreak of world's history AIMS Math 2018 448 463
, ,[29] Dynamical behavior of a stochastic epidemic model for cholera J. Franklin Inst 2019 7486 7514
, , ,[30] Second-order sufficient conditions for control problems with mixed control-state constraints J. Optim. Theory Appl 1995 649 667
,[31] Modeling optimal intervention strategies for cholera Bull. Math. Biol 2010 2004 2018
, , , ,[32] Z. Mukandavire, F.K. Mutasa, S.D. Hove-Musekwa, S. Dube and J.M. Tchuenche, Mathematical analysis of a cholera model with carriers and assessing the effects of treatment. Nova Science Publishers, Inc. (2008), pp. 1–37.
[33] Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe Proc. Natl. Acad. Sci 2011 8767 8772
, , , , ,[34] Mathematical analysis of a cholera model with public health interventions Biosystems 2011 190 200
,[35] Forecasting the size and peak of cholera epidemic in Yemen, 2017 Future Microbiol 2018 399 402
, ,[36] Transmission dynamics of cholera in Yemen, 2017: a real time forecasting Theor. Biol. Med. Model 2017 8
, , , ,[37] Predicting endemic cholera: the role of climate variability and disease dynamics Clim. Res 2008 131 140
, , , ,[38] Vibrio cholerae and cholera: out of the water and into the host FEMS Microbiol. Rev 2002 125 139
,[39] The role of immunity and seasonality in cholera epidemics Bull. Math. Biol 2011 2916 2931
, ,[40] Sufficient conditions for strong local optimality in optimal control problems with L2-type objectives and control constraints Discrete Contin. Dyn. Syst. Ser. B 2014 2657 2679
, ,[41] Cholera models with hyperinfectivity and temporary immunity Bull. Math. Biol 2012 2423 2445
, ,[42] Transmission dynamics of cholera: mathematical modeling and control strategies Commun. Nonlinear Sci. Numer. Simul 2017 235 244
, , , , ,[43] On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming Math. Program 2006 25 57
,[44] Modeling cholera dynamics with controls Can. Appl. Math. Q 2011 255 273
,[45] A generalized cholera model and epidemic-endemic analysis J. Biol. Dyn 2012 568 589
,[46] World Health Organization, Yemen: Weekly epidemiological bulletin W26 2018 (2018). Available at http://www.emro.who.int/images/stories/yemen/week_26.pdf?ua=1
[47] World Health Organization, Global Task Force on Cholera Control, Cholera country profile: Haiti (2011). http:://www.who.int/cholera/countries/HaitiCountryProfileMay2011.pdf
[48] Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models Comput. Math. Appl 1996 109 116
, ,[49] Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity Nonlinear Dyn 2021 931 955
, , ,Cité par Sources :