Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 22.

Voir la notice de l'article provenant de la source EDP Sciences

The Sterile Insect Technique (SIT) is a classic vector control method that has been successfully applied to fight against diverse insect plagues since the 1950s. In recent years, this strategy has been used to control mosquito populations, in order to limit the spread of the diseases they transmit. In this paper, we consider a system of reaction-diffusion equations to model the mosquito population and study the effect of the release of sterile mosquito males. Then, we propose to analyze the release in a limited area inside a wider area containing a natural mosquito population. We are interested in protecting a mosquito free region from invasion by mosquitoes from an exterior domain by controlling the population in a release band at the border between the two regions: we construct a barrier blocking the invasion of mosquitoes from the exterior. We adapt the geometric method of Lewis and Keener (see Lewis and Keener [SIAM J. Appl. Math. 61 (2000) 293-316]) in this framework and extend their main result to find relations on the size of the release region and the density of the released sterile males that allow us to block the invasion. Numerical simulations are also performed to illustrate our results.
DOI : 10.1051/mmnp/2022026

Luís Almeida 1 ; Jorge Estrada 2 ; Nicolas Vauchelet 2

1 Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions UMR7598, 75005 Paris, France
2 Laboratoire Analyse, Géométrie et Applications CNRS UMR 7539, Université Sorbonne Paris Nord, Villetaneuse, France
@article{MMNP_2022_17_a31,
     author = {Lu{\'\i}s Almeida and Jorge Estrada and Nicolas Vauchelet},
     title = {Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations},
     journal = {Mathematical modelling of natural phenomena},
     eid = {22},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022026/}
}
TY  - JOUR
AU  - Luís Almeida
AU  - Jorge Estrada
AU  - Nicolas Vauchelet
TI  - Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022026/
DO  - 10.1051/mmnp/2022026
LA  - en
ID  - MMNP_2022_17_a31
ER  - 
%0 Journal Article
%A Luís Almeida
%A Jorge Estrada
%A Nicolas Vauchelet
%T Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022026/
%R 10.1051/mmnp/2022026
%G en
%F MMNP_2022_17_a31
Luís Almeida; Jorge Estrada; Nicolas Vauchelet. Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 22. doi : 10.1051/mmnp/2022026. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022026/

[1] L. Almeida, J. Estrada and N. Vauchelet, The sterile insect technique used as a barrier control against reinfestation. Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization, edited by H. Roland et al., Berlin: De Gruyter (2022) 91–111.

[2] L. Almeida, A. Leculier and N. Vauchelet, Analysis of the “Rolling carpet” strategy to eradicate an invasive species. hal-03261142.

[3] D.G. Aronson, H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in vol. 446 of Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, edited by J.A. Goldstein. Springer, Berlin, Heidelberg (1975).

[4] R. Bellini, M. Calvitti, A. Medici et al., Use of the sterile insect technique against aedes albopictus in Italy: first results of a pilot trial. In Area-Wide Control of Insect Pests, edited by M.J.B. Vreysen, A.S. Robinson and J. Hendrichs. Springer, Dordrecht (2007).

[5] H. Berestycki, N. Rodriguez, L. Ryzhik Traveling wave solutions in a reaction-diffusion model for criminal activity Multiscale Model. Simul. 2013 1097 1126

[6] P.-A. Bliman, D. Cardona-Salgado, Y. Dumont, O. Vasilieva Implementation of control strategies for sterile insect techniques Math. Biosci. 2019 43 60

[7] G. Chapuisat, R. Joly Asymptotic profiles for a traveling front solution of a biological equation Math. Mod. Methods Appl. Sci. 2011 2155 2177

[8] E. Chambers, L.K.M. Hapairai, B.A. Peel, H. Bossin, S. Dobson Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions PLoS Negl. Trop. Dis. 2011 e1271

[9] V.A. Dyck, J. Hendrichs and A.S. Robinson, Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management. Springer (2005).

[10] Y. Dumont, J.M. Tchuenche Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus J. Math. Biol. 2012 809 854

[11] S. Eberle Front blocking versus propagation in the presence of a drift term in the direction of propagation Nonlinear Anal. 2020

[12] E.F. Knipling Possibilities of insect control or eradication through the use of sexually sterile males J. Econ. Entomol. 1955 459 462

[13] M.A. Lewis, P. Van Den Driessche Waves of extinction from sterile insect release Math Biosci. 1993 221 247

[14] T.J. Lewis, The Effects of Nonexcitable Regions on Signal Propagation in Excitable Media: Propagation and Reflection. Ph. D. Thesis, University of Utah (1998).

[15] T.J. Lewis, J.P. Keener Wave-block in excitable media due to regions of depressed excitability SIAM J. Appl. Math. 2000 293 316

[16] J. Li and Z. Yuan, Modelling releases of sterile mosquitoes with different strategies. J. Biol. Dyn. (2015) doi: https://doi.org/10.1080/17513758.2014.977971.

[17] G. Nadin, M. Strugarek, N. Vauchelet Hindrances to bistable front propagation: application to Wolbachia invasion J. Math. Biol. 2018 1489 1533

[18] C.F. Oliva, M. Jacquet, J. Gilles The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on reunion island: mating vigour of sterilized males J PLOS ONE 2012

[19] J. Pauwelussen One way traffic of pulses in a neuron J. Math. Biol. 1982 151 171

[20] C. Pouchol, E. Trélat and E. Zuazua, Phase portrait control for 1D monostable and bistable reaction-diffusion equations. Nonlinearity (2018).

[21] L. Roques, T. Boivin, J. Papaïx, S. Soubeyrand and O. Bonnefon, Dynamics of Aedes Albopictus invasion insights from a spatio temporal model (submitted).

[22] D. Ruiz-Balet, E. Zuazua Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations J. Math. Pures Appl. 2020 345 375

[23] S. Seirin Lee, R.E. Baker, E.A. Gaffney, S.M. White Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques Theor. Ecol. 2013 427 442

[24] M. Strugarek, H. Bossin, Y. Dumont On the use of the sterile insect release technique to reduce or eliminate mosquito populations Appl. Math. Model. 2019 443 470

[25] X. Zheng, D. Zhang, Y. Li Incompatible and sterile insect techniques combined eliminate mosquitoes Nature 2019

Cité par Sources :