Voir la notice de l'article provenant de la source EDP Sciences
Luís Almeida 1 ; Jorge Estrada 2 ; Nicolas Vauchelet 2
@article{MMNP_2022_17_a31, author = {Lu{\'\i}s Almeida and Jorge Estrada and Nicolas Vauchelet}, title = {Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations}, journal = {Mathematical modelling of natural phenomena}, eid = {22}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022026/} }
TY - JOUR AU - Luís Almeida AU - Jorge Estrada AU - Nicolas Vauchelet TI - Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022026/ DO - 10.1051/mmnp/2022026 LA - en ID - MMNP_2022_17_a31 ER -
%0 Journal Article %A Luís Almeida %A Jorge Estrada %A Nicolas Vauchelet %T Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022026/ %R 10.1051/mmnp/2022026 %G en %F MMNP_2022_17_a31
Luís Almeida; Jorge Estrada; Nicolas Vauchelet. Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 22. doi : 10.1051/mmnp/2022026. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022026/
[1] L. Almeida, J. Estrada and N. Vauchelet, The sterile insect technique used as a barrier control against reinfestation. Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization, edited by H. Roland et al., Berlin: De Gruyter (2022) 91–111.
[2] L. Almeida, A. Leculier and N. Vauchelet, Analysis of the “Rolling carpet” strategy to eradicate an invasive species. hal-03261142.
[3] D.G. Aronson, H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in vol. 446 of Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, edited by J.A. Goldstein. Springer, Berlin, Heidelberg (1975).
[4] R. Bellini, M. Calvitti, A. Medici et al., Use of the sterile insect technique against aedes albopictus in Italy: first results of a pilot trial. In Area-Wide Control of Insect Pests, edited by M.J.B. Vreysen, A.S. Robinson and J. Hendrichs. Springer, Dordrecht (2007).
[5] Traveling wave solutions in a reaction-diffusion model for criminal activity Multiscale Model. Simul. 2013 1097 1126
, ,[6] Implementation of control strategies for sterile insect techniques Math. Biosci. 2019 43 60
, , ,[7] Asymptotic profiles for a traveling front solution of a biological equation Math. Mod. Methods Appl. Sci. 2011 2155 2177
,[8] Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions PLoS Negl. Trop. Dis. 2011 e1271
, , , ,[9] V.A. Dyck, J. Hendrichs and A.S. Robinson, Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management. Springer (2005).
[10] Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus J. Math. Biol. 2012 809 854
,[11] Front blocking versus propagation in the presence of a drift term in the direction of propagation Nonlinear Anal. 2020
[12] Possibilities of insect control or eradication through the use of sexually sterile males J. Econ. Entomol. 1955 459 462
[13] Waves of extinction from sterile insect release Math Biosci. 1993 221 247
,[14] T.J. Lewis, The Effects of Nonexcitable Regions on Signal Propagation in Excitable Media: Propagation and Reflection. Ph. D. Thesis, University of Utah (1998).
[15] Wave-block in excitable media due to regions of depressed excitability SIAM J. Appl. Math. 2000 293 316
,[16] J. Li and Z. Yuan, Modelling releases of sterile mosquitoes with different strategies. J. Biol. Dyn. (2015) doi: https://doi.org/10.1080/17513758.2014.977971.
[17] Hindrances to bistable front propagation: application to Wolbachia invasion J. Math. Biol. 2018 1489 1533
, ,[18] The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on reunion island: mating vigour of sterilized males J PLOS ONE 2012
, ,[19] One way traffic of pulses in a neuron J. Math. Biol. 1982 151 171
[20] C. Pouchol, E. Trélat and E. Zuazua, Phase portrait control for 1D monostable and bistable reaction-diffusion equations. Nonlinearity (2018).
[21] L. Roques, T. Boivin, J. Papaïx, S. Soubeyrand and O. Bonnefon, Dynamics of Aedes Albopictus invasion insights from a spatio temporal model (submitted).
[22] Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations J. Math. Pures Appl. 2020 345 375
,[23] Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques Theor. Ecol. 2013 427 442
, , ,[24] On the use of the sterile insect release technique to reduce or eliminate mosquito populations Appl. Math. Model. 2019 443 470
, ,[25] Incompatible and sterile insect techniques combined eliminate mosquitoes Nature 2019
, ,Cité par Sources :